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Abstract 

he viability of a risk model is dependent on the availability and quality of the input parameters. 

The data gathering effort can either push the risk model (i. e., the model is built around the 

available data) or be pulled by the risk model (the model dictates the data needs). The former option 

is not available to US pipeline gas operators that must now adhere to a list of data items prescribed 

in 45 CFR § 192.917(c). This work produced data quality diagnostic tools, Key Performance 

Indicators (KPI), and an approach to incorporate data uncertainty into the different types of risk 

models. A Data Quality Score was developed to allow the internal stakeholders to assess the suitability 

of the input database before running risk, which is also useful to demonstrate the progress with the 

data acquisition effort. Data quality KPIs can be evaluated in many dimensions; their development 

was based on a review of data quality systems for scientific and engineering processes, which had 

many coincidences with the parameters in the guideline in API Bulletin 1178. The 

multidimensionality of the data uncertainty makes the definition of the associated meta data a 

complex task and a possible issue for the database definition. The sensitivity analysis can be leveraged 

to assess the data importance and minimize the amount of meta data stored. Finally, a guideline for 

modifying the risk model to compensate for data with high uncertainty. For probabilistic models, the 

distribution of the input parameter with high uncertainty needs to be modified depending on the 

nature of source of uncertainty.  

 

 

 

  

T 
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Introduction 

The current state of the art in pipeline risk modelling in North America is characterized by (1) being 

data-driven, (2) transitioning to fully quantitative models, (3) introducing the "As Low As Reasonably 

Practicable (ALARP) concept, (4) demonstrating risk reduction through Preventive and Mitigative 

Measure (PMMs) selection and (5) incorporating model and data uncertainty to the risk assessment. 

The last listed item, i.e., incorporation of model and data uncertainty, is now a requirement for 

natural gas operators in the United States as per CFR 45 § 192.917(c)3.  

Data Quality (DQ), defined as a measure of the current state of data, is particularly difficult to 

evaluate and report because of the multiple dimensions of data uncertainty. DQ limits the 

performance of any model or assessment; a model, being a simplified representation of reality, can 

produce realistic results as good as its algorithms, its assumptions and its inputs. The present work 

proposes transitioning from a data gathering plan feeding a risk model to a data quality management 

framework. 

 

The development process of a Data Quality Management System is shown in Figure 1. The 

determination of the data quality Key Performance Indicators (KPIs) was based on a literature review 

of existing data quality systems and the dimensions of data uncertainty considered. Based on the 

selected KPIs, two tools were developed for data assessment: a Data Quality Scorecard and a Data 

Quality Dashboard. Scoring the different dimensions of data uncertainty is not enough for model 

correction; hence the scores were normalized by introducing the concept of Data Quality Target (i.e., 

the realistic data quality that can be achieved) and then combined with the results of the risk model 

sensitivity analysis to come up with a Data Quality Risk Vector (i. e., a measure of the risk introduced 

by the data uncertainty). Data Quality Risk was used to optimize the Probabilistic Risk Assessment 

(PRA) by modifying the input distributions. Data Quality should be leveraged to improve the data-

gathering process. Hence, it is incorporated into a DQ management framework that updates the 

mapping of data inside the pipeline operator’s organization and the data gathering plan for the risk 

model. 

 

 

 

Figure 1. Data Quality Management System development process  
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Data Quality KPIs 

API Bulletin 1178 Second Edition (2024) 

API Bulletin 1178 Second Ed. “Integrity Data Management and Integration” §5.2.3 proposes 

considering the following dimensions of data quality: 

 

1. Accuracy – the data represents reality. 

2. Precision – the data are as exact as needed. 

3. Completeness – all needed data is available. 

4. Consistency – the data is free of internal conflicts 

5. Timeliness – the data are as current as needed and are retained until no longer needed.  

6. Granularity – the data are kept and represented at the right level of detail to meet the ends. 

7. Integrity – the data are structurally sound.  

 

The proposed DQ dimensions are based on a Standard Data Quality Classification developed by the 

Data Warehouse Institute (TDWI), a private initiative providing resources for data management and 

AI adoption [1]. The definitions implicitly introduce the notion of defining a target to satisfy; it is 

impractical and unrealistic to try to achieve perfect DQ in all dimensions, such as expecting perfect 

measurements or maintaining all information up to date. The concept of DQ target was integrated 

into the developed methodology. DQ management is context dependent. Hence a standard DQ 

system such as the one proposed by TDWI needs to be adapted to the information systems and 

applications of interest. 

Existing DQ Systems 

A review of existing data quality systems was performed for the present work and identified mature 

DQ methods applied to the fields of information technology, [2, 3, 4, 5, 6], business intelligence [7, 

8, 9, 10], national security [11, 12], supply chain management [13], engineering asset management 

[14] and geosciences models [15, 16]. Those DQ methods were tailored to their specific information 

systems. For example, data warehouses and peer-to-peer information systems are common in IT 

applications. On the other hand, monolithic information systems and raw data systems (e.g., printed 

records) are rare DQ applications. Pipeline risk models are served by distributed information systems, 

which are a collection of initiatives and stakeholders coordinated by a workflow (aka. the data 

gathering plan) with data originating from different repositories and with a degree of interoperability 

between applications and databases.  

Each reviewed DQ method provides a classification of data dimensions, qualities, or attributes. A 

large variety of DQ dimensions have been defined for the existing DQ methods, proving the 

complexity of assessing data uncertainty. The developed data dimension classification is context-

dependent (e.g., Duplicity is extremely detrimental in supply chain systems, while analytic laboratories 

can limit their DQ system to only consider Accuracy and Precision). Table 1 presents the most 
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common data attributes considered in existing DQ methods, along with a general definition and 

alternate names. Two dimensions appear in all reviewed DQ methods: Accuracy and Precision. 

Timeliness is the third most frequent dimension used. Completeness is the attribute with most 

ambiguous definition. Some reviews list up more than sixteen possible data dimensions. Batini et al. 

[17] propose a basic set of data dimensions composed of Accuracy, Precision, Completeness, 

Consistency and Timeliness.   

Table 1. List of Data Attributes from Literature Review 

Attribute Definition Alternative Names 

Accuracy Extent to which the data represents reality Exactness 

Precision Exactness of the measurement Exactness, Exactitude 

Timeliness Certainty time-dependent data is still valid Currency 

Coverage Percentage of non-null values for a given 
parameter.  

Completeness 

Completeness Degree of all required values for an assessment 
being available.  

 

Conformity Degree data is structurally sound Integrity 

Consistency Degree data is free of internal conflicts 

 

Uniqueness Measure of the duplicity of records Duplicity 

Lineage Uncertainty introduced by derivation methods  

 

Subjectivity Human interpretation 

 

Usability Degree data is accessible and navigable 

 

Granularity Degree data is kept at the right level of detail 
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Accuracy and Precision 

Accuracy has a syntactic component (the degree data is free of format errors) and a semantic 

component (the degree a measurement represents real world data). This work only considers the 

semantic component, though the syntactic accuracy of the risk model database is part of the 

preliminary checks performed by the database administrator. Precision is the exactness of a 

measurement, and many statistics handbooks resource to a four-pane illustration with archery targets 

to illustrate the difference between accuracy and precision. Sizing measurement methods used in 

pipeline integrity are validated based on Accuracy and Precision (e. g., the unity plots used for ILI 

validation). Quantitative Risk Assessment (QRA) users, feeding the model with fixed value inputs, 

are faced with the challenge of combining these two attributes in one parameter. Should they feed 

the model with the most common value or the value corresponding to the worst-case scenario? In the 

authors’ experience, most quantitative models’ inputs are not consistent and are a mix of the two 

cases. PRA have the advantage of combining accuracy and precision in the input distributions: for 

example, in a normal distribution accuracy will be associated to the mean value and precision to the 

standard deviation.       

Timeliness 

Data quality deteriorates with the passage of time; for some applications it is associated with the 

constant improvement of data acquisition methods and the challenges associated with data and 

record retention. In pipeline integrity, Timeliness is associated to the time dependent threats, such 

as corrosion or pressure fatigue. Integrity assessments, such as ILI runs, hydrostatic testing and direct 

assessments, provide integrity assurance for a given moment in time. The information provided by 

this snapshot of the pipeline integrity, mainly flaw dimensions, is projected into the future 

performing an engineering assessment that is often performed offline (e. g., growing crack like features 

by pressure fatigue). The engineering assessments used for the projections introduce a degree of error 

and/or uncertainty that often goes unaccounted in the risk model. Timeliness can also be used to 

control values that are no longer valid and should be deprecated or archived.  

Completeness and Coverage 

Completeness is a recurrent data attribute in DQ, yet its definition is dependent of the context. In 

the context of databases and data warehouses, it can be understood as the degree of values being 

included in the data collection or a measure of non-null values in the data collection (e. g., a database 

where 50% of the pipe is missing manufacturing year). It can also be understood as a measure of the 

data sufficiency of a given parameter (e. g., the pipe seam type parameter using the ERW – Unknown 

label would provide incomplete information) or the degree the information has all required parts (e. 

g., pipe susceptibility assessment requires values for manufacturing year, pipe manufacturer, and pipe 

seam type, among other parameters). In this work, the two concepts were differentiated with the 

introduction of the Completeness and Coverage attributes, which correspond to semantic and 

database completeness respectively. 
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Conformity, Consistency, Uniqueness and Lineage 

As mentioned before, monolithic data sources are rare, hence the input database used for the PRA 

should not be considered the Source of Truth, i.e., the reference used to verify the format and value 

of a given input. In pipeline integrity, the risk model can be several steps apart from the original 

repositories and the Source of Truth (SoT) for a given parameter can be an intermediary repository 

(e. g., the digitalized original construction records or an export of the model used for geotechnical 

studies). In many instances, a Source of Authentication (SoA) is also required to certify the data has 

been verified or generated according to a standard or requirement. For example, the MAOP could 

be looked up from an export of the operational parameters, but part of its uncertainty is associated 

to its method of determination or re-confirmation. This work adopted Conformity to control the 

degree a parameter complies with the designated format and value range, and Consistency as a 

control of the parameter value has been authenticated or verified (by comparing the SoT with the 

SoA).    

Vintage pipeline information systems tend to be a mix of legacy records and data generated with 

modern acquisition and analysis methods, which leads to data gaps and duplicate records. Data 

duplicity impact is attenuated by mapping data repositories and designated the SoT. Still this work 

considered Uniqueness to control the existence of multiple records for a given parameter across the 

data repositories.    

Data uncertainty introduced by derivation methods is generally oversighted, since engineering 

methods for pipeline integrity are generally validated for Fitness for Service (FFS) and their degree of 

conservatism is demonstrated. Lineage, the measure of uncertainty introduced by the derivation 

methods was dropped for this work but is particularly important for fracture toughness. Crack Tip 

Opening Displacement (CTOD) toughness is considered more representative of crack growth 

conditions in pipelines than Charpy V-Notch (CVN) toughness, in addition all available equations 

for transforming CVN to CTOD toughness introduce a different of degree of error.     

Miscellaneous Data Dimensions 

Not all data attributes developed for DQ systems are relevant to PRAs: 

• Subjectivity is critical for SME based assessments but can be omitted for fully probabilistic 

models. 

• Usability is related to discovery and is relevant for systems with multiple applications or 

users with different qualifications or expertise. 

• Granularity measures how finely data is divided within a data structure and is relevant for 

resource assessment. 

• Other dimensions such as conciseness, clarity, interactivity and security do not apply for 

PRAs. 
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Table 2 illustrates some of the most common DQ issues in pipeline PRAs along with the associated 

KPI used for control. 

 

Table 2. Examples of Data Quality Challenges and Derived Requirements for Pipeline PRAs 

Data Domain Data Challenges 
Derived Data Quality 

Requirements 

Pipe Dimensions 
Uncertain nominal dimensions Accuracy 
Reported dimensions but no TVC source Consistency 

Pipe Mechanical 
Properties 

YS rather than SMYS for PRA models Accuracy and Precision 
CVN rather than CTOD toughness Lineage 

Pipe 
Manufacturing 

Unknown Manufacturer Completeness 
Unknown Seam Type Completeness 

Line 
Construction 

Unknown line construction year Completeness 
Missing weld inspection information Completeness 

Line Operation 
Pressure Spectrum only available for 
recent years 

Completeness 

MAOP reconfirmation pending Consistency 

Flaw Dimensions 
Correct flaw dimensioning Accuracy and Precision 
Representative feature growth Timeliness 

Corrosion 
Monitoring 

Missing monitoring data for extended 
period 

Coverage 

Surveys missing lines or segments  Coverage 

Fluid properties 

Average fluid temperature used for all 
line 

Completeness 

Infrequent fluid chemistry sampling Coverage and 
Timeliness 

 
Table 3 presents the eight data dimensions adopted for the DQ method developed for this work, 
along with the matching data dimensions proposed in API Bulletin 1178.  
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Table 3. DQ Method Data Dimensions and Corresponding API Bulletin 1178 Dimensions 

DQ Method API Bulletin 1178 
Accuracy Accuracy 

Precision Precision 

Completeness 
Completeness 

Coverage 

Timeliness Timeliness 

Conformity Integrity 

Consistency 
Consistency 

Uniqueness 

n/a Granularity 

 
 
The DQ method developed for this work uses similar KPIs for Accuracy, Precision, Consistency and 

Timeliness as those defined in API Bulletin1178. The DQ system uses KPIs for semantic and 

syntactic completeness, hence the introduction of Coverage. Consistency was supplemented with 

Uniqueness. Integrity was substituted by Conformity (The degree of which data align to the pre-

established format and value range rather than the degree data is structurally sound). Granularity, 

measures how finely data is divided within a data structure, was considered relevant for resource 

assessment and was dropped for the developed DQ method.  

Data Quality Scoring 

An essential part of the data quality framework developed, a data quality control document was 

created, this document formalizes data flow within the data systems, as well as controls in place on 

all variables related to the pipeline risk models. Each variable is critically detailed, outlining its Source 

of Truth (SoT), data type, and priority level, ranked from one through three, i.e., signifying its 

influence on the accuracy and reliability of the risk algorithm results. The document also identifies 

the data owner and specifies where the variable is stored within the database. To ensure data integrity, 

the document provides guidelines for assessing data quality across key dimensions, including 

completeness, consistency, conformity, coverage, timeliness, and uniqueness. Additionally, it links 

each variable and the specific risk algorithm it is used in.  

 
A dashboard was designed to visually present the KPIs of each variable for better DQ monitoring and 

management. The dashboard provides an easy-to-use interface for tracking key dimensions of data 

quality in real time or on a regular interval. The dashboard should be allowed by this view to provide 
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clear and swift identification and prioritization of data quality improvements through variable 

importance. The dashboard alongside the control document ultimately reinforces the importance of 

maintaining high data quality standards for informed decision-making, transparency, and robust risk 

assessments. Figure 2 and Figure 3 illustrate an example dashboard that can be developed for 

monitoring data quality.  

 

 

Figure 2. Data quality dashboard summary 
 
 
 

 

Figure 3. Data quality dashboard extract for completeness 
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Data Quality Risk 

The eight KPIs selected for the DQ system (Accuracy, Precision, Completeness, Coverage, 

Timeliness, Conformity, Consistency and Uniqueness) cannot be used directly to modify the 

probabilistic risk model and compensate for data uncertainty. The developed DQ method picked up 

and adapted the concepts of Data Quality Target and Data Risk Vector from a risk-based method to 

quantify the impact of data uncertainty in corporate governance systems [18]. 

Data Quality Target 

The definitions of data dimensions in API Bulletin 1178 refer to the needed data quality rather than 

the best possible quality. It would be unrealistic and impractical to expect the highest scores in all 

eight KPIs for all parameters. For example, it would be unrealistic to expect full coverage of flaw 

detection and sizing using ILI tools in a pipeline system with sections that cannot be made ILI 

piggable; a realistic expectation would be to maximize the fraction of ILI piggable sections and have 

flaws reported for all piggable sections. Many operators settle for CVN toughness while others are 

generating CTOD toughness values; the target data quality for that parameter would be different for 

the two cases.  

 

The Data Quality Target consists in setting the optimal KPI scores for each parameter: Figure 4 

illustrates this concept with a radial plot; in the illustrative case the target scores for Accuracy, 

Precision, Completeness and Coverage are not maximized yet they are satisfactory for the risk model.   

   

 

Figure 4. Data quality target for a parameter (illustrative) 

 

Figure 5 illustrates sample KPI scores compared to the DQ target in a radial plot; the actual KPI 

scores would always form a polygon contained within the polygon defined by the DQ target.    
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Figure 5. Data quality target and KPI score for a parameter (illustrative)  

 

The definition of the DQ Target allows the normalization of the KPI scores per the following 

equation:   

Where, 

 QSi is the Quality Score for KPI(i) with a value between (0;1); 

 Si  is the Score for KPI(i); 

 Ti is the target for KPI(i). 

The normalized Quality Score can be combined with the results of the sensitivity analysis to rank the 

impact of data uncertainty. Sensitivity analysis determines a Sensitivity Factor for each parameter that 

is a measure of the impact of the input parameter upon the model output, as illustrated in Figure 6.   

 

 

Figure 6. Sample sensitivity factors for Mod B31G [19] 
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The developed DQ method proposes determining Data Quality Risk, the impact of data uncertainty 

upon the model output, as follows:  = (1 )  

Where, 

 DQRi is Data Quality Risk for KPI(i), with a value between (0;1); 

 QSi is the Quality Score for KP(i); 

 SF is the Sensitivity Factor for the input parameter.  

DQRi is a measure of the importance of data uncertainty and will tend to the upper limit of 1 when 

(1) the data quality is low and (2) the sensitivity factor is high.  

The above relationship defines a Data Risk Vector as follows: 

=
(1 )(1 )(1 )(1 )(1 )(1 )(1 )(1 )

=   

 

Where DQR is the Data Risk Vector for a given input parameter. 

Integrating Data Uncertainty to Probabilistic Risk Models 

The Data Risk Vector is defined for each input parameter and ideally should be used to compensate 

for data uncertainty by adjusting the distribution of the input parameter. The present section assumes 

a PRA input with a normal distribution, with mean value  and standard deviation .  

Accuracy and Precision uncertainty is already incorporated for flaw sizing, since ILI validation is 

based in bounding both dimensions. Figure 7 shows four unity plots for flaw sizing using an ILI tool 

that illustrate how Accuracy and Precision should be considered to correct the flaw size input 

distribution used as an input. Case (a) corresponds to an ideal ILI tool inspection with all field 

verified flaw measurements within the specified toll error tolerance (10% WT) with no obvious under 

or over calling; under the unity plot a corresponding normal distribution for a flaw is illustrated. 

Cases (b) and (c) would correspond to a valid ILI inspection with the tool under calling and 

overcalling the flaw size respectively. Finally, case (d) would correspond to a ILI inspection with 

excessive scatter (less than 80% of the readings outside the 10% band).     
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Figure 7. Illustration of precision and accuracy corrections for flaw sizing with ILI tool. (a) ideal 
validated run, (b) under calling tool, (c) over calling tool, (d) excessive scatter.   

 

Case (a) in Figure 7 corresponds to the most flaw sizes used in Probability of Exceedance analysis for 

PRAs: a normal distribution is considered with a men value, , equal to the measured value and a 

standard deviation, , equal to in-third the specified tool tolerance. No correction for the mean value 

(i. e., the tool’s Accuracy) is considered in case (a). A correction to the measurement’s Accuracy for 

when the tool under or overcalls, can be introduced by decreasing or increasing the men value, as 

shown in cases (b) and(c). Finally, a correction to the measurement’s Precision is to be introduced by 

modifying the standard deviation, as illustrated in case (d) in Figure 7. The general equation for the 

correction due to Accuracy and Precision uncertainty would be as follows: = (1 )  

and = (1 )  

Where: 
  

and 
  

 

Though Accuracy and Precision are generally compensated for input distributions. The effect of 

Timeliness is often disregarded: flaw sizing projection into the future, (e. g., crack growth due to 

pressure cycling and wall loss due to corrosion) are often performed offline (i. e. not within the risk 

model) and using deterministic methods with conservative assumptions developed for fitness-for-
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service. To be consistent with the PRA, flaw growth/projection should also be a probabilistic analysis. 

Let’s considered a common scenario; the pressure spectrum for a limited period for a location 

upstream from the flaw (the compression station outlet) is to be used for pressure fatigue analysis. 

The analysis for fitness-for-service would assume the pressure spectrum is representative for all the 

pipeline operation since the flaw was characterized and that the pressure cycling at the compressor 

station outlet is more severe than what is experienced at the flaw location. The equivalent pressure 

fatigue analysis for a PRA should move away from conservative assumptions and perform a Monte 

Carlo analysis with representative distributions for all inputs; this is not currently a common practice. 

The question remains, as what type of correction would need to be considered to compensate for the 

projection (Timeliness) of a flaw size using deterministic analysis. Figure 8 illustrates the two options 

available for a flaw distribution determined by inspection and then growth by deterministic methods 

(i. e., the mean value is increased but the distribution shape remains unchanged).   

 

Figure 8. Illustration of timeliness correction options: (a) mean correction and (b) 
standard deviation correction 

Case (a) in Figure 8 would correspond to a mean vale correction; the distribution can be shifted to 

higher or lower values. Case (b) corresponds to a standard deviation correction by increasing the 

scatter of the resulting flaw sizes. As previously mentioned, the deterministic analysis is required to 

be conservative, and a shift to higher values would exacerbate the level of conservativeness of the 

results. On the other hand, it would be difficult to determine the decrease in mean value required to 

compensate for the level of conservativeness introduced by the deterministic analysis. Hence, the 

method illustrated in case (a) is inappropriate to compensate for Timeliness. The correction 

illustrated in case (b) represents better how data uncertainty propagates in linear methods. Hence, 

the proposed correction for Timeliness uncertainty for PRAs is the following: 

 = (1 )  

Where: 
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Default Distributions for PRAs  

The adequate application of the Completeness and Coverage KPIs require differentiating real values 

(generated through a data acquisition method) and default values. Default values in deterministic 

models tend to represent the worst-case scenario1; for example, in FFS analysis when the nature of a 

pipe seam is uncertain, the minimum CVN toughness values specified by PHMSA are adopted. The 

default values determined for deterministic methods and quantitative models are often adopted for 

PRAs; this is not adequate and leads to hybrid risk models running on a mix of fixed value and 

distribution inputs. Compensating for Completeness and Coverage requires developing default 

distributions representative of the worst-case scenario. In the case of material toughness, the adoption 

of the default CTOD toughness distribution in API 1178 Annex E would be more appropriate than 

the adoption of fixed toughness values when running PRAs. It’s important to note, some authors 

have proposed a correction to the distribution corresponding to the most probable case [REF]; this 

approach seemed complicated for the nature of pipeline systems. Hence the preference to determine 

default distributions corresponding to the worst case based on the vast guidance available for FFS 

analysis.    

Synthetization 

The DQ methodology presented here in would seem overwhelming with eight KPIs and the 

requirement to define target for each dimension and for each parameter. The amount of meta-data 

required to be stored seems excessive. In practice, many simplifications to the general DQR equations 

occurred during the application of the proposed methodology. For example, it has been mentioned 

that Lineage was originally considered as a KPI, but during the application of the methodology, it 

was found to be relevant only to material toughness; it was then decided to drop Lineage and 

document the inherent limitations of using CVN toughness distributions. DQ method users should 

also be reminded that the determination of the Sensitivity Factor and the DQR vector for each 

parameter should be leveraged to concentrate in the relevant parameters: In general, pipe dimensions 

and material properties have been found to be the most impactful parameters for Likelihood of 

Failure (LoF) assessment. 

Consistency is relevant to US gas operators due to the requirements for TVC files but might not be 

relevant for operators in other parts of the world. In addition, other simplifications can be done for 

mature information system; Uniqueness was considered not to be an issue in some applications.  

Depending on the reviewer and application, the recommended minimum KPIs to consider are 

Accuracy, Precision, Completeness and Timeliness, with Coverage often added to this shortlist. The 

authors agree these five KPIs are the minimum set of dimensions to consider for pipeline PRAs.   

 
1 Some QRA users use two sets of default values corresponding to the worst case and the most probable case and 
generate two separate risk runs.   
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A Framework for Data Quality Management. 

In the US, the implementation of DQ methods for PRAs is currently driven by requirements from 

the Federal Agencies; if the impact of the DQ methods is limited to the risk assessment, then it is 

equivalent to an audit [17]. Incorporating the DQ method into the continuous improvement cycle 

creates a framework capable of addressing the operational issues impacting DQ. Data Risk 

determination contributes to identifying the parameters with low DQ and their KPI or data 

dimensions to improve. 

A past work on sensitivity analysis highlighted how its results can help the data gathering efforts by 

determining the inputs with highest impact on the model outcome [19]. The developed DQ 

management methods supplement those results by providing actual metrics of the data adequacy and 

determining the actual information issues that need to be addressed. Figure 9 presents a schematic 

representation of the continuous improvement cycle developed around DQ management. 

 
Figure 9. Data Quality Management Cycle for PRA 

The four stages defined for DQ management consist in calculating and presenting the eight DQ KPIs 

with the help of the tools developed. The KPIs are further processed to determine Data Quality Risk 

and determine the issues with the current information (the database feeding the risk model). Data 

Risk can be used to propose remediating actions for the next data gathering effort in two categories: 

data mapping (determine or update the SoT and SoA) and the updated data gathering plan with the 

prioritized items to collect. Shein et al. have developed a detailed data quality framework for asset 

management that can be adopted for future iterations of the continuous improvement cycle [20]. 
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Conclusions 

A Data Quality Management framework was developed for pipeline risk assessments, in alignment 

with the proposed methods in API Bulletin 1178. The method scores eight KPIs (Accuracy, Precision, 

Completeness, Coverage, Timeliness, Conformity, Consistency and Uniqueness) with the help of a 

scorecard and a Dashboard. 

A method based on Data Quality Risk was developed to compensate for data uncertainty in 

Probabilistic Risk Assessments. The method combines the score relative to a preset target for each 

data dimension with the sensitivity factor determined for a given input parameter. The resulting Data 

Quality Risk for each dimension can be used for the correction of the input distribution required to 

compensate for data uncertainty. 

A continuous improvement cycle around data quality management is proposed to steer all data 

related initiatives related to pipeline integrity. The developed system is adequate for detecting data 

issues and prioritize the remediating data gathering actions. 
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