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Abstract 

In-Line Inspection (ILI) is widely used to monitor pipeline conditions, identify and size defects, and 

meet regulatory requirements. However, alternative approaches for ‘non-piggable’ pipelines are 

needed where ILI is not feasible. In these cases, knowledge-based models relying on data, engineering 

assessments, and assumptions are required. 

 

External Corrosion Direct Assessment (ECDA) is a process where variables believed to contribute to 

corrosion are combined with above-ground surveys or computational modelling to identify corrosion 

‘hotspots’ for in-field investigation. However, these techniques have several known limitations, often 

leading to wasted excavation campaigns and lingering uncertainty. 

 

To enhance the direct assessment process, ROSEN has incorporated predictive analytics from its 

Integrity Data Warehouse (IDW). The IDW contains data from over 26,000 in-line inspections, 

covering more than 620,000 miles (1,000,000 kilometres) globally. These data provide significant 

improvement in predictive capacity and the likely condition of pipeline assets across all diameters, 

pressures, and fluids. 

 

ROSEN has also begun incorporating Large Stand-off Magnetometry (LSM) into its direct assessment 

approaches. LSM detects changes in the magnetic signature of the pipeline that correlate with 

increased stresses, enabling the detection of a wide range of stress-raising anomalies and defects. This 

adds another layer of information, allowing for greater confidence in the identification of potential 

excavation sites. 

 

This paper provides a detailed overview of the new process and the improvements made through the 

addition of LSM and the integration of the IDW into a ECDA process.  
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Introduction  

The process of External Corrosion Direct Assessment (ECDA) has been used throughout the pipeline 

industry, long before the introduction of the NACE standard SP502 in 2010. Primarily aimed at 

unpiggable pipelines, ECDA has been regarded as an industry accepted approach for assessing the 

corrosion condition of pipelines, where pigging is not possible. Although ECDA does have many 

advantages, in that it is a pre-emptive approach, it is heavily reliant upon the quality and quantity of 

data available. In order to be considered effective and robust enough to provide confidence in any 

results, users of the standard can be required to collect large volumes of costly data – ultimately, it is 

the volume of data collection, which is seen by many as the limiting factor of the approach. In 

addition, data collection is focused primarily on corrosion detection using Cathodic Protection (CP) 

measurements, which can be effected by ground or coating condition. Furthermore, although 

corrosion is a key failure mode, it only accounts for 28% of failures [1] leaving threats like ground 

movement, or physical, third party damage unaccounted for.  

 

Data collected by In-Line Inspection (ILI) over many years contains information on corrosion trends 

across thousands of pipelines around the world. This data can be used to make predictions, regarding 

the likely condition of pipelines that have not been inspected. Historically, integrity and corrosion 

engineers have developed knowledge of the fundamentals of corrosion by academic study and learnt 

from experience with different pipelines.  

 

Today, machine-learning models can be trained to make predictions of pipeline condition. The 

training of these models is typically most effective, when large volumes of good quality relevant data 

are available. Historic ILI data, particularly when combined with data such as rainfall, soil type and 

coating, provides a basis for predictive model development. Over the past few years, ROSEN have 

been exploring the machine-learning possibility, by collecting relevant datasets combined with our 

many years of ILI data history and GIS expertise. The result is an approach that delivers different 

types of models, depending on the application and available data. Generically we refer to these 

models as ‘Virtual-ILI’ (V-ILI), with the intention being able to make a prediction of what we would 

find by an actual ILI, if it were completed. The models range from low resolution basic predictions 

of overall condition for a pipeline, based on simple inputs such as construction year, coating, 

diameter, country, etc. Up to complex models that will predict the condition of specific segments, 

using multiple additional inputs including rainfall, soil types, environment, land-use, etc.  

 

This paper discusses the use of the ROSEN V-ILI tool in order to enhance the ECDA process in 

combination with LSM data. A case study is also presented, where V-ILI and LSM was used as part 

of the ECDA assessment of a pipeline to provide not only further input data to the process; but also 

provide higher confidence – reducing the number of excavations required. This combination of 

inspection techniques is referred to as Non-Intrusive Pipeline Assessment (NIPA) within ROSEN. 
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The ECDA Process 

The process of ECDA is founded on the simple integrity management loop of Plan, Do, Check, 
Act, and consists of four stages. A high-level summary of the four stages has been provided below: 

 Stage 1 – Plan – Preassessment 

o Data collection and initial analysis, to decide on the inspection methods to be 
used and most importantly, if the ECDA approach is feasible. 

 Stage 2 – Do – Indirect Inspection 

o Perform indirect inspection of the 
pipeline by desktop study and above 
ground surveys, to understand the 
likely condition of the pipeline. In 
order to identify and rank areas 
where external corrosion may be 
present, known as hotspots. 

 Stage 3 – Check – Direct Examination 

o Excavation at the hotspot areas to 
confirm or deny the presence of 
corrosion, classifying and sizing 
corrosion anomalies, as well as the 
conditions to which the pipeline is 
exposed. 

 Stage 4 – Act – Post Assessment 

o Review of the results from the ECDA process in order to assess the overall 
effectiveness of the analysis and perform a fitness for purpose / service assessment. 
Culminating in the definition of the reassessment interval and recommending 
integrity and corrosion management actions. 

Although ECDA is an industry recognised approach, it does have limitations, namely it can only be 

used to detect corrosion and only where an indication may be reliably identified using CP detection 

methods such as Close Interval Potential Survey (CIPS). This means that the ECDA process can 

inadvertently lead to a false indication of the pipeline condition, especially if CP shielding is also 

present.  

 

Through the addition of LSM to the ECDA process, further defect types can be identified, measured 

and the effects understood. Using a process of overlaying data sets to look for commonality between 

completely different phenomena enables higher confidence in results and a reduction in the chance 

of false negatives. Likewise, by further incorporating V-ILI data comparisons using patterns and 
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learnings from thousands of pipelines subjected to ILI, more can be done to compare and contrast 

the uninspected pipeline – Giving a prediction of condition based on the behaviour of similar lines. 

Large Standoff Magnetometry 

Large Standoff Magnetometry (LSM) is a non-intrusive inspection technology used for aboveground, 

indirect pipeline inspections. The sensor technology uses the phenomenon of magnetostriction, 

where a ferromagnetic material changes its shape or dimensions when subjected to a magnetic field. 

This deformation occurs because the magnetic field alters the alignment of magnetic domains within 

the material, causing it to expand or contract. The magnetic field in the case of pipelines can be that 

induced naturally from the earth and pipeline operation (passive), or applied artificially using AC 

signal generators (active). Similarly, the Villari effect, or inverse magnetostriction, describes changes 

in a material's magnetic susceptibility when mechanical stress is applied. 

 

Using LSM identifies what is known as Stress Concentration Zones (SCZ), without having to 

physically change or intrude into the system, making it particularly useful for pipelines that are not 

possible to inspect using conventional methods, like ILI. LSM measures geomagnetic flux around 

steel pipelines in X, Y and Z vectors, across a sensor array, to detect and evaluate changes in stress 

states and indicate anomalies.  

 

The presence and sizing of SCZ in a pipeline can be an indication of anomalies attributed to 

deformation, buckling, corrosion and ground movement, essentially anything that could change the 

uniform stress in the material. Claims have been made that LSM can identify phenomena such as 

Stress Corrosion Cracking (SCC); however, there is still no conclusive proof that LSM is a reliable 

detection method and remains to be confirmed. Nevertheless, LSM can be used to identify areas at 

higher susceptibility of SCC, moreover, it has been employed in ground movement monitoring to 

observe and check change in the shape of pipeline routes, perform bending strain analysis and the 

development of SCZ in vulnerable areas. 

 

Although not specific to direct pipeline anomalies, LSM can also be used to detect and map 

underground pipeline furniture, such as valves, drains, foreign pipelines or cables and even stuck 

pigs by detecting changes in the surrounding magnetic field caused by increases in magnetic mass or 

stress. 

 

Although LSM has shown its effectiveness in maintaining pipeline integrity, there are still many 

debates about its suitability as a standalone inspection method. This has not been helped by the lack 

of regulation in the area of LSM; the claims which can be made about detection capabilities, or the 

intellectual property rights guarding the analysis of data - meaning its results can appear “black box”. 

It is for this reason that ROSEN utilises LSM as part of a combination of inspection and analysis 

techniques, and not as a standalone solution, particularly in cases where high consequence areas are 

found. For example, when LSM is combined with direct assessment it serves as an enhancement 
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inspection, providing information on a lot more than simply corrosion. This is key to further 

refinement and ranking of anomaly indications, reducing unknown unknows and false positives or 

negatives – ultimately providing more confidence regarding pipeline integrity. 

LSM comparison to ILI 

ROSEN has performed a number of comparisons of LSM results to direct field verification, but also 

ILI, principally to validate performance and to further understand the limitations of the technology. 

The below Table 1 shows one of the comparisons made by ROSEN where the Estimated Repair 

Factor (ERF) was calculated for each defect detected in an ILI data set. These ERF values were then 

compared to the number of SCZ  anomalies and their locations that were detected and measured by 

LSM. The ERF was chosen to be used as a measure of detection capabilities, as ultimately it is the 

ERF value that is used to determine the criticality for defect repair when ILI is performed.  

 

The ERF is a numerical value used to prioritise and assess the need for repairs or mitigative actions 

on pipeline defects. It is a critical parameter in pipeline integrity management, particularly for 

evaluating the severity of metal loss or other anomalies detected during inspections and is typically 

calculated using industry-recognized defect assessment models, such as Modified ASME B31G and 

RSTRENG (Remaining Strength of Corroded Pipelines) [2]. These models consider factors like the 

defect depth, length, and shape, as well as pipeline operating conditions, expressed as the ratio of the 

pipeline's maximum allowable operating pressure (MAOP) or operating pressure to the predicted 

failure pressure of the defect. 

 

The values calculated by the ERF are classified as  

 ERF > 1.0: - The defect is critical and poses a risk of failure at the operating pressure. 

Immediate repair or mitigation is required. 

 ERF  1.0: - The defect is not currently critical, but monitoring or future mitigation may still 

be necessary. 

 

By systematically applying the ERF, pipeline operators can focus their resources on the most critical 

areas, minimising the risk of pipeline failures and ensuring long-term operational safety. Therefore, 

the comparisons to ILI were focused on identifying if LSM can reliably identify the most critical ERF 

defects. Providing this was the case, then there is confidence that although low level anomalies may 

be missed, significant anomalies which pose a threat to integrity would reliably be detected.   

 

The findings of Table 1 show that this is the case, in that the Probability of Detection (POD) of 

smaller ERF defects is lower with LSM; however, larger defects (where the ERF is approaching or 

exceeding 1.0) were found in all cases. Although a slight increase in the number of defects detected 

was observed by increasing the distance tolerance, generally all defects were found at the same 

position as ILI. This provides high confidence that critical defects are reliably detected at the location 

they are active.  
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Table 1: Comparison of ILI defects and LSM anomalies as a function of ERF 

 ERF 
ILI 

Features 

Corresponding LSM indications within distance tolerance bands 

0 m tolerance ±1 m tolerance ±3 m tolerance ±5 m tolerance 

Qty % Qty % Qty % Qty % 

<0,8 1172 492 42 530 45 624 53 669 57 

0,8 to 0,9 13 6 46 7 54 8 62 8 62 

0,9 to 1,0 1 1 100 1 100 1 100 1 100 

1,0 to 1,1 1 1 100 1 100 1 100 1 100 

>1,1 2 2 100 2 100 2 100 2 100 

Virtual ILI 

Virtual-ILI [3] is the process of using machine learning methods to learn from a global database of 

pipeline inspection information, for the purpose of predicting the likely condition of an unseen 

pipeline, one that has either yet to be inspected, or cannot be inspected with conventional ILI tools 

(Figure 1). 

 

 
Figure 1: The Fundamentals of Virtual-ILI 

 
A pipeline (or pipe joint) has a number of parameters that describe it, which include design, 

construction, and location information. These are used as predictor variables, and they form the basis 

of the inputs for the machine learning models.  

 

Previous studies [3, 4, 5] have shown positive results using Virtual-ILI to predict third-party damage, 

and the density and maximum depth of external corrosion anomalies. In addition to this, generalised 

corrosion growth rate distributions that can also be applied to pipelines with similar location and 

construction attributes. Models have been trained to predict two external corrosion condition 

metrics; (i) maximum depth (% of wall thickness), and (ii) number of external corrosion defects per 

square meter.  
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Three variations of Virtual ILI are utilised to predict the condition of the target pipeline. These 

models are defined as: 

 
- Model A  

A basic model, trained on a limited number of predictor variables with the intention of giving a 

general overview of the pipeline condition based mainly on trends that relate to pipeline design and 

construction. 

 
- Model B  

A more sophisticated model, with environmental predictor variables in addition to the basic design 

and construction inputs.  As with “Model A” the intention is to give a general overview of pipeline 

condition, but more accurate than using design and construction information alone. 

 

- Model C  
A further extension of “Model B”, that segments the pipeline and delivers a per segment condition 

prediction. The predictor variables are the same as Model B, namely design, construction, and 

environmental data. The intention is to predict which segments are likely to be in better or worse 

condition, reflecting the reality that many pipelines are in generally good condition, and some have 

a few bad segments. 

 
Dataset 
For a model to be trained and evaluated, sufficient metal loss ILI inspection data representative of 

the target population that the Virtual ILI is attempting to predict must be available. For example, if 

we are trying to predict the condition of uninspected pipelines installed during a certain period, then 

it is important that the training data have enough of these groups to learn from. The same logic 

applies to other categories, such as external coating, pipe grade, location, etc. An imbalanced split of 

data between these groups (e.g. if the data is dominated by pipelines with a particular coating) can 

result in biases, with detrimental effects on the model’s ability to successfully make predictions. 

 

The Integrity Data Warehouse (IDW) is used to provide the data for this study. The IDW is a central 

repository containing in-line inspection data from tens of thousands of pipelines that ROSEN has 

inspected over multiple decades, including associated pipeline meta-data. Table 2, summarises the 

status of the IDW with respect to metal loss inspections at the time of writing. 

 
Table 2: Integrity Data Warehouse Summary 

Inspection runs 24,799 

Number of pipelines 11,051 

Number of pipe joints 66,604,244 

Inspected length (km) 803,805 
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Number of external metal loss anomalies 91,497,322 

 
Training data 
Within the overall pipeline IDW, the dataset used for this study comprises of data from 1,868 

pipelines; considered to be a subset with good representation for the predictor variables used as input. 

This includes pipelines from Europe and North America, with construction years ranging from 1940 

to 2020.  

 

The variables selected for model A are pipe joint design information including construction year, 

length, wall thickness, diameter, pipe grade and coating type. The model A is an entry-level model, 

providing a rough prediction of the overall condition of the pipeline based on a limited number of 

variables. 

 

In order to improve model performance, additional geospatial and environmental meta-data is 

collected from external datasets and spatially joined with the location of each pipe joint. This process, 

known as geo-enrichment (Figure 2), is possible when the location of the pipeline right of way is 

accurately known. Both the pipeline geo-enriched (B) and segmented geo-enriched (C), Virtual-ILI 

models use this data in addition to the predictor variables used to train model A. Variables obtained 

in the geo-enrichment process include the following: 

 
 Land use 
 Terrain 
 Soil type 
 Local rainfall 
 Intersections (water, road, rail, power line) 

 

 
Figure 2: Geo-enrichment examples – from left to right: soil type, ground elevation, land use and 
average rainfall. 
 
Feature engineering is used to provide additional variables which include location and climate, 

engineered features allows the model to learn which pipelines are located in similar regions of the 

world, both in terms of their actual location and the classification of the climate in which they reside. 

By engineering a variable, we are ensuring that the predictor variables are linked to one another. 
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The addition of these variables aims to increase both model accuracy and confidence of predictions 

by enabling the model to identify additional trends within the data, with respect to external threats 

giving rise to external corrosion. Similarly, having this data to pipeline joint resolution enables 

prediction to the level of specific pipeline segments or joints. 

 
Methodology 
The objective of supervised machine learning is to learn from data where the ground truth is already 

known, and then attempt to predict the probability of correctly identifying a specific class of ground 

truth on completely unseen data. For this study, the Virtual ILI models are trained to predict two 

condition metrics: 

 
1. External corrosion max depth, an indicator of the severity of corrosion; and 
2. Number of external corrosion defects per square meter, an indicator of the extent of corrosion. 
 
Both target variables are calculated from ILI metal loss reports and then assigned into four categories 

(Table 3). The predictor variables relating to these inspections are then used in the model to find 

trends and underlying patterns that match patterns within these condition metrics. This is achieved 

by defining a function, f, that maps a set of predictor variables { , to a target variable, y, thus  

 
y = f(x1, x2, …, xn) 

 
Table 3: Target variable categories 

Parameter Cat. Value Parameter Cat. Value 
Number of 
defects per 
m² 

1 0 Maximum 
defect depth (% 
wt) 

1 0% 
2 >0 to 0.001 2 >0% to <25% 
3 >0.001 to <0.03 3 25% to <50% 
4 0.03 4 50% 

 
Segmentation 
Model C is designed to make per segment predictions, which are expected to be useful for integrity 

management purposes, particularly when considering external survey actions. Previous studies [4, 5] 

have made use of unsupervised learning techniques to segment the pipelines based on geospatial 

properties such as land use, intersections, population density, pipe grade. The use of unsupervised 

learning (hereafter referred to as clustering) to segment the pipelines allows an automated data-driven 

approach, that can deal with large volumes of data. 

 

The case study below, uses an agglomerative clustering model (based on a hierarchical clustering 

algorithm) [6] to segment the pipelines. This takes input data for each pipe joint (including soil type 

and land use), and then determines clusters of closely related inputs, based on these predictor 

variables.  The soil type and land use spatial feature variables yield 27 distinct categories, which we 

then use for classification purposes. Having this number of variables will result in long data 

processing times and difficulty with visualising and validating the results. To remedy this, an extra 

step is added to this process, which is dimensionality reduction, using a technique called Principal 
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Component Analysis (PCA) [7]. PCA is used to reduce these variables to a low dimensional space, 

whilst also retaining a significant proportion of their explanatory power. Figure 3 illustrates an 

example of a pipeline being segmented, where S refers to the segment ID. 

 

 
Figure 3: Example segmentation of pipeline 

 
Model Selection and Validation 
To demonstrate the Models for this case study, the parameters of the pipeline discussed below were 

used. The target variables are categories (ranges of values for maximum defect depth and defect 

density), which are referred to as a classification problem in machine learning. It is therefore necessary 

to select an algorithm that best suits the problem. Prior to any training, tuning or testing, 20% of the 

pipelines in the relevant dataset are set aside for the purpose of validation, also referred to as the 

serving set. This method ensures that the models are not tuned to this data and therefore will best 

represent how the model would perform, on unseen data. 

 

Five machine learning algorithms were tested as part of the initial step, these were: Random Forest, 

Support Vector Machines (SVM), LASSO regression, MLP Classifier, and Extreme Gradient 

Boosting (XGBoost). 5-fold cross validation [8] was applied to these, where data is randomly 

partitioned into 80% training and 20% testing, where the test subset changes for five iterations until 

all the data has been used for training and testing. It is important to mention that within the cross-

validation approach for the segmented resolution, we ensure that segments belonging to the same 

pipeline are never in both training and test set. In the author’s experience, failing to do this can give 

a false increase in model performance due to the tendency for areas that are close together having 

similar values. This is known as Spatial Autocorrelation [9]. 

 

The most favourable results were achieved by the ensemble models (Random Forest and XGBoost), 

both knowing to perform well on complex datasets and be relatively robust to outliers within input 

data. 

 
The next step in the selection process involves tuning multiple combinations of hyperparameters 

(~200) on both ensemble models. Hyperparameters are used to tune a learning algorithm with the 

goal of maximizing the model’s performance in a given context. Examples of these include but are 

certainly not limited to, tree depth (how many questions will be asked in each tree before a prediction 

is made) or the number of trees/bootstraps to use. An important consideration when tuning a model 

is to ensure that it does not overfit.  
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Overfitting is the phenomenon of a model being tuned too closely to the training data, and providing 

poor results on test data. This typically results in a solution that does not generalise well to unseen 

data. Based on this, within the context of a random forest model, more trees or leaf notes are not 

necessarily the best choice, reinforcing the need to explore multiple hyperparameter combinations. 

Additionally, randomised thresholds can be used at each decision node in an ensemble of decision 

trees, which tends to enhance the overall performance of the ensemble by reducing the correlation 

between each specific model within that ensemble. 

 

The performance metrics used to validate these models were accuracy, balanced accuracy (an average 

of each class accuracy), as well as the confidence level in the predictions being made. A summary of 

the best performing algorithms for each of the models is provided in Table 4. 

 
Table 4: Selected ML algorithms for each model 

Model Target Variable ML Algorithm 
A Number of defects per m² Random Forest 

Max Depth (%) XGBoost 
B Number of defects per m² XGBoost 

Max Depth (%) XGBoost 
C Number of defects per m² XGBoost 

Max Depth (%) Random Forest 
 
The overall performance of the different models is summarised in Table 5. 
 

Table 5: Model Performance 

Model Input 
Variables 

Target Variable Accuracy 
(%) 

Balanced 
Accuracy 
(%) 

Accuracy 
Within 1 
class (%) 

A Basic 10 No. defects per m² 55 55 85 
Max Depth (%) 51 51 89 

B  Geoenriched 22 No. defects per m² 63 62 92 
Max Depth (%) 56 57 92 

C (geoenriched 
+ segmented) 

22 No. defects per m² 63 57 90 

Max Depth (%) 63 51 94 
“Accuracy” refers to the overall accuracy of correct predictions against incorrect predictions.  
 
“Balanced accuracy” (Bal. Acc.) is calculated by taking the average of each class accuracy (a robust metric 
when there are class imbalances).  
 
The last column denotes the confidence in which the model is making predictions on the test line based on 
what it has learnt from the training data. A high confidence would suggest that the model has seen pipelines 
sharing similar properties with consistent levels of corrosion. 

 
Table 6 shows a confusion matrix illustrating predictions made for defects per m² using Model C 

where correct predictions refer to the numbers along the diagonal (predicted class and true class are 
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the same). The least favorable of these results are the top right and bottom left corner where the 

former refers to model predictions of high corrosion density when the true value is in fact no 

corrosion. Similarly, the bottom left shows model predictions of no corrosion when the true value is 

high corrosion. Each of these extremes collectively represent 3.1%. 

 
Table 6: Confusion matrix showing performance of Model C in predicting feature density. 

Accuracy 62.84% 

T
ru

e 
La

be
l 

No Corrosion 183 37 20 9 
Low 21 35 22 1 
Mid 16 14 66 18 

High 7 0 26 39 
 No Corrosion Low Mid High 

Predicted Label 

Case Study 

The combined NIPA and V-ILI approach was utilised for a pipeline that was consider to be typical 

for the application of ECDA. This case study present a summary of the findings. It is a relatively short 

pipeline, just 7km long that crosses agricultural land and is a relatively high pressure section of a gas 

distribution system taking natural gas from a national transmission system and delivering it to a small 

town. The pipeline was installed in the mid 1970’s and during its operational life it had never been 

subjected to any inspection or pigging activities. A summary of the pipeline details is given in Table 

7. 

 
Table 7: Pipeline summary 

Description High Pressure Gas Distribution 
Length ~7 km 
Nominal Diameter 14 inch (377 mm) 
Wall Thickness  9 mm 
Pipe Grade API B 
Design Pressure 38 barg 
Construction Commissioning Date mid 1970’s 
Coating Type Bitumen 

 
Prior to this study, there was uncertainty regarding the condition of the pipeline. There had been no 

internal inspection, and the results of any historical above ground surveys had been mislaid. In 

addition to this, limited information with regards to the performance of the pipeline corrosion 

mitigation barriers, such as cathodic protection was available. However, there was no physical or 

direct evidence that the pipeline was in a poor or degraded condition. Instead due to the lack of 

confidence the risk attributed to the pipeline was driven by expectations of the operator, based on 

the pipeline age and lack of inspection confidence.  
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Typically to improve confidence in the condition of a natural gas pipeline, and demonstrate good 

practice to stake holders, options, as outlined in AMSE B31.8S [10], are hydrotest, internal 

inspection or Direct Assessment. However, hydrotest requires a pipeline to be taken out of service, 

which is disruptive and can be very costly. In addition, depending on the pipeline condition, the 

amount of associated repairs may become excessive and no information is gained regarding coating 

or pipe wall anomalies that could become a problem in the future. 

 

In-line inspection provides detailed information on the pipe wall, allowing defects to be monitored 

and repaired if critical, or before they grow to unsafe dimensions. However, installing the equipment 

needed to launch and receive inspection tools, and controlling flow to achieve good inspection results 

can also be costly and disruptive. Direct Assessment is widely used but requires reliable input data 

(ideally historical records), excavations to confirm affected areas, and it is generally considered less 

reliable than internal inspection, but to improve overall confidence ROSEN used a NIPA approach 

with V-ILI. 

 

The Stage 1 Pre-assessment concluded that, as the pipeline conveys dry sales gas for customer use, it 

was unlikely that internal corrosion was present; therefore, efforts should be focussed on an ECDA 

approach. A gap analysis showed that there was insufficient data to immediately move to Stage 3 and 

select locations to excavate and prove condition. The combination of the age of the pipeline (>40 

years), and lack of reliable records, gave the expectation that the condition of the pipeline may be 

degraded or poor. Experience suggests that diligent operators who maintain their pipelines in good 

condition also keep comprehensive records, so expert opinion is inclined to caution when records 

are missing. 

 

The next step, as part of Stage 2, was performing a LSM, Close Interval Protection Survey (CIPS) and 

Direct Current Voltage Gradient (DCVG) survey to gather information regarding the performance 

of the Cathodic protection polarisation, coating condition, environmental parameters and stress 

anomalies. While above ground surveys are generally easier to complete than ILI or hydrotest, it is 

not a trivial undertaking and achieving high quality results requires the mobilisation of an 

experienced team and access to walk the pipeline route, which can also be difficult to arrange and be 

costly. 

 

Upon review of the above ground data, and corelation of anomalies, the results showed that while 

there were a number of possible defects found by the DCVG survey, the pipeline was fully protected 

by the ICCP system. However, in the absence of historical CP data, it was not known if the CP system 

had been providing sufficient protection over the past 40 years. Further comparison of the pipeline 

CP defects to that of LSM, found that there were no significant SCZ features in the immediate area 

of coating defects. Although there were some low level stress indications, they were not at an intensity 

that would indicate significant deterioration of the pipeline integrity. The results can be seen below: 
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Figure 4: Close Interval Potential Survey (CIPS) results 

 

 
Figure 5: Direct Current Voltage Gradient survey results 
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Figure 6: Large Standoff Magnetometry – location of SCZ defects vs. %SMYS 

 
When these initial results were presented to the client, there was some doubt as to the reliability of 

the inspection. This was due to the stark contrast of the above ground inspection results and 

assessment, compared to the condition expectations of the client – driven by the age of the pipeline. 

In these situations, it can be the expectation of finding many defects that drives what is perceived to 

the be a successful inspection. Therefore, if an initial expectation is that a pipeline should have many 

features and none are found, it can be interpreted that the inspection must be incorrect. 

 

To support the findings of the NIPA ECDA above ground work and further justify the result of the 

above ground surveys, Virtual-ILI was deployed. 

 

Model A was run first to give an initial indication of likely condition of the pipeline. This lightweight 

model using only 10 design and construction predictor variables predicted the target pipeline defect 

density (defects per m2) to be >=0.001 - <=0.03 with a confidence of 53%. Maximum defect depth 

was also predicted to be between 25% and 50% depth metal loss, also with a confidence of 53%. To 

give some context this condition prediction is compared with the condition of all pipelines in the 

IDW in Figure 7. 
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Figure 7: Model A (basic) Predicted condition class compared with full population of IDW 
 
The condition as predicted by Model A covers a range of the total world population of pipelines. 

Note that the areas coloured green, blue, red and purple represent lower or upper quartiles with 

respect to probability of exceedance (probability that defect depth is > 80% wall thickness) and defects 

per m2. The subject pipeline is predicted to be somewhere in the lower part of the population with 

respect to defect depth and around the middle of the population for defect density. This suggests 

that if the condition is similar to that of pipelines of similar, age, coating, grade, diameter, etc. then 

corrosion can be expected to be relatively extensive, but the depth should not be too severe. The 

confidence in the predictions was considered to be reasonable, given the limited input data used, but 

on the low side at 53%. Therefore, a digital model of the pipeline route was created, relevant 

environmental data was collected, and Model B was run. 

 
Model B also predicted defect density to be >=0.001 - <=0.03 defects per m2 but with a much 

improved confidence of 93%. Maximum defect depth was predicted to be between 0% and 25% of 

wall thickness, with a confidence of 61%. The Model B condition prediction is compared with the 

condition of all pipelines in the IDW in Figure 8. 
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Figure 8: Model B (geo-enriched) prediction of condition class against full IDW 

 
The condition predicted by model B is clearly better than that predicted by the basic Model A, with 

a lower class for maximum defect depth. The potential extent of defects however remains relatively 

high.  

 

These results indicate that, assuming the subject pipeline condition is represented by similar pipelines 

in the training set, then an ILI inspection might find a relatively high number of defects, but it is 

unlikely that any would be very deep or need repair. This supports the finding of the above ground 

surveys, and confirms that the likely defects would be relatively minor.   

 

The outcome of Stage 2 of the ECDA process is to define locations for excavation and direct 

examination of the pipe. As the V-ILI provided further justification that the number and severity of 

defects should be low, ROSEN used its NIPA process to define and rank locations for direct 

examination which would be representative of areas most likely to contain the most severe anomalies. 

In this type of situation, the number of excavations required to prove the condition of the pipeline 

can be substantial. Especially proving a lack of corrosion defects, which is inherently more difficult 

than proving that corrosion is present. However with the addition of LSM and V-ILI justification, 

the number and location of excavations can be much more easily justified.  
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In order to optimise the number of excavations required and to gain further confidence in the extent 

and severity of the corrosion, V-ILI Model C was utilised. The aim of Model C was to further segment 

the pipeline to identify how many possible segments, and if particular segments, would be more likely 

to contain corrosion. Thereby enhancing the confidence of the results from the direct assessment 

methodology, and provide further justification of the pipeline condition.  

 

Model C (geo-enriched and segmented), identified two segments; Segment 1 running from the start 

of the pipeline to approximately the 6 km point. Segment 2 comprising the remainder of the pipeline. 

The segments are shown below in Figure 9 on a map. Blue and red refer to segments 1 and 2. 

 

 
Figure 9. Map showing pipeline route with Segment 1 in blue and Segment 2 in red, plus excavation 
locations. 
 
Feature density was predicted to be >=0.001 - <=0.03 defects per m2 with a confidence of 80% for 

both segments, suggesting a uniform distribution of features along the whole length, qualitatively 

matching the results of the DCVG and LSM survey (note the V-ILI is run independently from these 

inputs). Maximum feature depth was predicted to be 0% - 25% wall thickness for segment 1 with a 

confidence of 32%, and the same for segment 2 with a confidence of 39%. This suggests that any 

deeper defects are predicted to be found in Segment 2, the last 1 km of the pipeline. Noting that the 

confidence in this prediction is low. Reasons for the low confidence were not investigated but could 

include: 

 
 The training data was not sufficiently representative,  
 The condition of the representative segments in the training data may have been highly 

variable, or  
 Similar segments in the training data may be close to the edge of the defined thresholds. 

 
Following analysis of the above ground survey data and the Virtual-ILI results, four excavation 

locations were chosen to give the best chance of finding any significant corrosion and best represent 

the possible data spread.  
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The distances and criteria are summarised in Table 8. 

 

Table 8: Excavations resulting from the Above Ground Survey and V-ILI – location ID, associated 
distances and criteria.  
Location 
ID 

Distance 
(m) 

Segment Comment 

1 7,079 2 
Highest combination of factors (CIPS, DCVG, LSM 
and V-ILI) 

2 6,953 2 Highest DCVG and LSM Defect, plus in V-ILI  

3 1,147 1 
Defect with low level DCVG and no significant SZC in 
segment 1 

4 6,384 2 Control site in V-ILI segment 2 
 
The combination of Virtual-ILI and above ground surveys all suggested that it was unlikely that deep 

corrosion would be found at any location. Locations 1, 2 and 4 all in segment 2 were considered to 

have the highest likelihood of having significant corrosion. While location 3 was required in order 

to perform validation in Segment 1, where the likelihood of deep corrosion was considered to be 

lower. 

Excavation Results  

Location 1  
Contrary to the expected design, the coating was found to be a single layer Polyethylene (PE) Tape, 

not bitumen, casting further doubt on the system records. A single coating defect was noted due to 

soil loading of the wrap, coupled with poor adhesion, as the coating peeled away easily and light 

surface corrosion was visible on the pipe surface. Likely to be a result of poor surface preparation 

during the wrapping process as mill scale was removed and impregnated within the adhesive. The CP 

system confirmed to be working, evidenced by the white hydroxide deposits beneath the coating. 

Crucially there was no evidence of corrosion of any significant depth at the location. 

. 

 
Figure 10: General Excavation Findings at Location 1 

 
Location 2  
The coating was again found to be a single layer Polyethylene (PE) Tape not bitumen. Again, minor 

coating defects were noted. A single coating defect was found due insufficient overlapping of the 
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wrap at the 6 o’clock position, coupled with poor adhesion furthermore attributed to poor surface 

preparation during coating application. The CP system was confirmed to be working, evidenced by 

the white carbonate deposits beneath the coating. Crucially, there was once again no evidence of 

corrosion of any significant depth at the location. 

 

  
Figure 11: General Excavation Findings at Location 2 

 
Location 3  
The coating was a rubberised wrap coating not bitumen or the PE tape seen at locations 1 and 2, 

casting further doubt on the system records. Minor coating defects were discovered. There was also 

evidence of poor adhesion, as the coating peeled away easily and light surface corrosion was visible 

on the pipe surface at the interloping areas. The CP system was working, however it was clear some 

shielding had been present leading to the formation of some minor corrosion pits < 1 mm deep (< 

11% of wt). 

 

  
Figure 12: General Excavation Findings at Location 3 

 
Location 4  
At the final location, the coating was confirmed to be the original 1970’s bitumen. Given the relative 

age of the coating and initial appearances, it was found to be in good condition, with no coating 

defects present. The bitumen was found to be brittle and easily removed, however this is to be 

expected from bituminous coatings of this age. Following removal of a small section of coating to 

confirm the beneath condition, the CP system was found to be functioning correctly, with a thin 

carbonate layer present on the surface and no evidence of corrosion of any significant depth. 
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Figure 13: General Excavation Findings at Location 4 

 
Table 9: Summary of Excavation Results 

 
In summary, there were no significant corrosion defects at any of the 4 locations excavated. Three of 

the excavation sites were in the segment of the pipeline that Virtual-ILI predicted to be in the worst 

condition, and two at the locations of the most significant areas derived from the from above ground 

surveys i.e. CIPS, LSM and DCVG. 

Conclusions 

Through the use of Data Analytics (V-ILI) and Large-Standoff Magnetometry, there can be a direct  

increase in assessment confidence, when following an ECDA program as part of a pipeline integrity 

management plan.  

 

Location 
ID 

Distance 
(m) 

Comment Corrosion Presence Comment  

1 7,079 

Highest 

combination 

of factors  

No significant features found 

PE tape, some coating 

defects, no measurable 

corrosion 

2 6,953 

Highest 

DCVG 

Defect 

No significant features found 

PE tape, some coating 

defects, no measurable 

corrosion 

3 1,147 

Defect with 

low level 

DCVG  

Minor corrosion defects 

found  

<1mm depth (<11%WT) 

Rubberised Wrap, 

coating defect at area of 

poor overlapping, 

possible shielding effect 

as a few small corrosion 

pits were found 

4 6,384 Control site No significant features found 

Bitumen, no coating 

defects, no measurable 

corrosion 
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The success of many integrity analysis are often judged by how many defects are found; however, in 

some cases, success must be based on their absence – providing this matches the predictions made as 

part of the indirect assessment. Having confidence in a lack of features can be a challenge, but V-ILI 

allows expansion of the data horizon and instead view thousands of other pipelines. In addition LSM 

provides a further data set for analysis that isn’t effected by the limitations of CP inspection.  

 

Taking learnings from the case study , the pipeline (despite its age and lack of historical data records) 

was found in good condition and is fit for future service. Nevertheless, expert opinion alone would 

have concluded that the condition was uncertain and that potentially significant metal loss may be 

present. In the absence of historical records, the expert opinion was constrained and hence cautious 

due to the lack of relevant data. The V-ILI models developed using machine learning were based on 

a dataset of nearly 2,000 pipelines, which predicted the condition to be fair. That is, some corrosion 

was predicted, 0.001 to 0.03 features per m2 (or up to 1 feature every 2.5 pipe joints), and maximum 

depths of 0 - 25% wall thickness. These Models were useful in supporting the ECDA process, most 

notably as part of the pre-assessment, with minimal initial data, through interpretation of above 

ground survey results and the selection and completion of relevant excavations.  

 
In summary, The integration of V-ILI and LSM into an ECDA process provides data to back up the 

expertise and opinions of pipeline integrity / corrosion subject matter experts. Strengthening the 

position of the expert and providing them with an additional input, that can be used when historical 

inspection or survey data is sparse or questioned. This is especially true in the case of pipelines were 

minimal anomalies may be present, as proving the absence of defects can be more challenging than 

identifying their presence! 

Further Work 

The initial results of integrating V-ILI into the ECDA process as a screening tool show promise, 

especially to add further confidence in ECDA results when limited data is available. The integration 

of additional ILI data into the IDW, increases the variety and amount of relevant pipeline data from 

different and similar cases, also expanding the capability of the V-ILI for more accurate predictions. 

ROSEN will be further developing not only the model algorithms, but also how V-ILI can be 

integrated into the core of the ECDA process and complimented by LSM data. 

 

Although useful in this instance, the primary use case seen for V-ILI is considered to be for 

preliminary pipeline screening, where operators have many pipelines that may need inspection – but 

only a finite budget. Subjecting a group of pipelines to V-ILI as an initial assessment, would allow for 

ranking of the most critical pipelines to be subjected to further inspection, with minimal input data.  
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