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Abstract 

9 CFR §192.607 defines unique populations for pipeline material verification.  These are defined 

by wall thickness, pipe grade, manufacturing process, manufacturing date, and construction date. 

Using in-line inspection (ILI) to identify pipe attributes has the potential to significantly improve the 

efficiency of satisfying the material verification requirements outlined in 49 CFR §192.607 for 

delineating unique populations along a pipeline. However, some of the ILI technologies used in this 

process are relatively new, and ILI vendors do not yet provide a performance specification for their 

performance in identifying populations. 

 

This analysis explores quantifying ILI tool performance in defining pipe populations by similar 

heuristic rules. It incorporates them into a probabilistic model specification for ILI population 

identification for three attributes: wall thickness, pipe seam detection, and yield strength. The models 

were fit using populations identified by the ILI vendor and validated using records review and field 

verification by an operator. Models adequate for characterizing the ILI tools, assumptions regarding 

pipe populations, and heuristics that can be used as proxies for the ILI vendor’s interpretation of 

measurement data are discussed. 

 

The methodology outlined in this study aims to quantify ILI’s ability to classify transmission pipeline 

segments into populations with unique material properties to comply with the Pipeline and 

Hazardous Materials Safety Administration (PHMSA) material verification requirements. The 

framework uses statistical methods similar to those outlined in API 1163 for ILI measurement 

validation, which the industry has been using for about twenty years. These models are designed to 

estimate the accuracy of future population identifications and identify populations that are more 

likely to be misclassified, thereby informing an operator’s decision-making to prioritize population 

validation efforts.  

Introduction 

49 CFR §192.607(b), Documentation of material properties and attributes, (PHMSA 2019) states: 

 

Records established under this section documenting physical pipeline characteristics and attributes, 

including diameter, wall thickness, seam type, and grade (e.g., yield strength, ultimate tensile strength, or 

pressure rating for valves and flanges, etc.), must be maintained for the life of the pipeline and be traceable, 

verifiable, and complete. 

 

ILI tools have historically been used to identify pipeline attributes such as diameter, wall thickness, 

and presence of long seam. Newer ILI technologies show promise in identifying additional pipe 

properties to help determine pipe grade based on estimates of yield strength and ultimate tensile 

strength. Using ILI to identify pipe attributes is likely to become a central tool in material verification 

programs that assist in satisfying the requirements outlined in 49 CFR §192.607. 

4 
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However, ILI technologies for material property determination are relatively new, and ILI vendors 

do not yet provide a performance specification for population identification. As a result, there are 

essential questions to address. For example, given an ILI report defining pipe populations, how can 

we characterize identification performance? How do we validate future ILI runs? Before answering 

these questions, a high-level understanding of the process used to identify populations and the tool 

performance for each attribute being used to discern populations must be reviewed. 

Population Identification Procedure 

In this paper, the population identification performance is based on our understanding of the 

procedure used by an ILI vendor, which follows a hierarchical procedure where the following 

attributes subdivide populations: 
 

1. Diameter 

2. Wall thickness  

3. Seam detection  

4. Yield strength and ultimate tensile strength  

5. Joint length  

6. Pipe segment location (e.g. facility piping, crossings, population density) 

 
The populations are classified using a combination of ILI measurements and data interpretation by 

the ILI vendor. It is straightforward to subdivide populations based on substantial differences in 

attributes across pipe segments. For example, if a significant difference in wall thickness is measured 

between two adjacent pipe joints, they are likely unique populations. The same applies to changes in 

the presence or absence of pipe seams.  

 

Identifying populations becomes more complex when it is based on yield strength, and typical 

unsupervised machine-learning algorithms are likely to fail.  Populations are only sometimes 

contiguous, and clustering algorithms will have difficulty correctly characterizing the small intricacies 

involved in determining whether two segment groups should be split or aggregated. Therefore, there 

is inherent utility in incorporating engineering judgement when defining individual populations. ILI 

vendor judgement allows subtle nuances to be considered, such as the history of line pipe 

manufacturing, pipeline ownership, and other details, which are difficult to capture with rule-based 

methods or automated clustering. 

 

ILI measurement tools and the subject matter expertise used to distinguish populations can be 

considered two different sources of uncertainty in population identifications: Type A and Type B 

(JCGM, 2008). 

• Type A pertains to the uncertainty inherent in the statistical analysis of the ILI tool's series of 

observations (i.e., the tool’s performance). 
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• Type B pertains to uncertainty by means other than statistical analysis from a series of 

observations (i.e., ILI vendor skill/experience in interpreting ILI data). 

 

This paper discusses the attributes used to identify unique populations: wall thickness, seam 

detection, and yield strength. Each attribute is evaluated in terms of its performance when used to 

subdivide populations ILI data.  

Performance Model 

General Approach 

At its simplest, population identification is a binary classification problem. Measurements from an 

ILI tool and data review can attempt to identify populations based on segment attributes, and the ILI 

vendor's calls can be correct or incorrect. There are two ways the tool can be correct (true positive 

and true negative) and two ways the tool can be incorrect (false positive and false negative); see Figure 

1. In the case of population identification, these outcomes have the following definitions: 

 

• True positive: an identified population is a distinct, unique population  

• True negative: no distinct population is identified, and none exists  

• False positive: an identified population is part of an existing population and not a  

unique population  

• False negative: no distinct population is identified, but a distinct population exists 

 

Figure 1. Possible Outcomes of a Binomial Event. 

In the context of population identification, tool performance can be quantified in terms of either 
population precision or population recall. 

Recall refers to the probability of identifying unique populations and the ability to avoid missing sub-
populations within the data. Recall relies on the bottom row in Figure 1 to define the number of 
correctly distinguished populations out of all populations: 
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Recall = TP / (TP + FN) 

Where: 
TP = true positives (unique populations correctly identified within a set of ILI 
measurements)  
FN = false negatives (unique populations missed within a set of ILI measurements) 

Precision relies on the left column in Figure 1 to determine the number of correctly identified 
populations out of all populations the ILI attempted to identify as unique: 

Precision = TP / (TP + FP) 

Where: 
TP = true positives (unique populations correctly identified within a set of ILI 
measurements) 
FP = false positives (a single population incorrectly identified as multiple within a set of ILI 
measurements) 

The goal for population identification performance is to determine methods to quantify recall and 
precision. For example, when dividing populations based on yield strength, what is the recall or 
probability of correctly identifying populations for a subset of measurements? 

In many cases, binomial performance is simplified as a single ratio that does not vary with other 
parameters. When expressed as a ratio, the performance metric can be illustrated as a single point 
with an upper and lower whisker representing the confidence interval. The confidence interval is 
commonly calculated using the exact methodology (Clopper and Pearson, 1934) or an accepted 
approximate method such as Agresti and Coull (1998). 

Sometimes, the performance is a function of a variable. For example, deeper anomalies are easier to 
detect than shallower anomalies. Therefore, detection probability as a function of anomaly depth is 
a reasonable model. This concept can be extended to multiple dimensions, where the recall or 
precision of a prediction is a function of multiple parameters. Precision or recall is generally expressed 
as one of the following terms. 

Recall as a single ratio: =  for j in wall thickness, seam detection, and yield strength. 

Recall as a function of a single variable: = ( ) for j in wall thickness, seam detection, and yield strength. 

Recall as a function of multiple variables: = ( , , , … ) for j in wall thickness, seam detection, and yield strength. 

For each attribute, three checks are performed: 

1. Is Precision or Recall (Type 1 or Type 2 error) the dominating factor in incorrect calls? 
2. Should the Precision/Recall be modelled as a single value, a function of a single variable, 

or a function of multiple variables? 
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3. If it is a function, which model and variables characterizing the data should be used to fit 
the performance model? 

Each attribute that identifies unique populations requires a model to estimate the probability of 
correct identification using unique measurements and heuristics. 

Model Approach 

Performance estimation based on each attribute is calculated by comparing the populations identified 
by ILI tool to those identified by reviewing historical records and in-field verifications. This method 
is similar to the API 1163 Level 3 method that estimates as-run tool performance from field validation 
data. 

Two approaches are discussed in API 1163 Level 3: statistical tolerance intervals (method 1) and 
Bayesian inference (method 2). For this paper, Bayesian inference was chosen to evaluate population 
identification performance for the following reasons (McElreath, 2020):  

1. There is no minimum required sample size. 
2. The shape of the resulting curves considers the sample size.  
3. The prediction is not a point estimate, allowing for full probabilistic analysis (engineering 

judgment can be used for deterministic applications).  
4. All assumptions about population performance are made upfront. The proposed models 

deduce the assumptions' real-world implications to quantify population identification 
performance.  

In the data used to fit models, the recall and precision of the data used indicate good performance 
across all populations, on average exceeding 95% for both attributes (populations are rarely missed 
based on the attributes used to delineate them, and incorrectly dividing a single population into to 
two more is infrequent). Due to the limited number of incorrect calls in the validation data, the 
dataset is imbalanced. This imbalance can significantly affect the performance of conventional 
models. However, the Bayesian approach offers a robust solution by quantifying the uncertainty 
arising from the imbalanced data and increasing flexibility in characterizing our models, if necessary. 
By leveraging Bayesian inference, the variability and confidence in predictions are better understood, 
even when dealing with limited and imbalanced data. 

Binomial Regression 

For all population identifications, the observed population identifications are a set of counts of the 
number of successes  out of  total trials. In other terms, based on a particular attribute used to 
distinguish populations, there is a proportion of times the identifications are correct, . Here, i 
indexes different subsets of the data based on specific attributes or data characteristics. The 
appropriate method to characterize these classifications is the binomial distribution (Vincent, 2022): ~Binomial( , ) 

Where: 
= number of successes (number of correct calls) for the -th subset of data (e.g., the subset 

defined by a particular attribute or data characteristic) 
 = number of trials (number of observations) in the -th subset 
= probability of successes (proportion of correct calls) for the -th subset 
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For any unique population, the goal is to estimate the probability that it is a correct call; either two 
populations are correctly identified as different, or one group of pipe segments is correctly identified 
as one population. The goal of fitting each probability of the correct identification model is to 
estimate  for a given predictor variable or set of predictor variables,  or i1, i2, … in respectively. 
A Bayesian model is developed for each attribute with its unique probability of success formula. 

Wall Thickness Model 

The difference in measured wall thickness is the first attribute used to subdivide pipe segments into 
unique groups. The limitation of distinguishing populations based on wall thickness is the 
measurement performance of the ILI tool. 

Figure 2 shows the nominal wall thickness measurements from an ILI as a function of the pipeline 
distance. We can determine if the call was correct for every unique population identified based on 
the difference in wall thickness between them. For example, the ILI tool may have incorrectly 
identified two unique segments of pipe with a wall thickness difference of 0.031 inches even though 
they were, in truth, the same wall thickness, but also correctly identified all unique populations with 
a wall thickness difference of 0.22 inches (transitions from 0.281-inch to 0.5-inch wall thickness). 
Figure 3 shows the example scenario as a proportion of correct population identifications. The 
proportion of correct calls in Figure 3 is a function of the difference in reported wall thickness 
measurements on the same pipeline. The size of each data point is proportional to the number of 
observations by wall thickness difference. A data point is added at the origin since unique populations 
cannot be identified without a difference in measured wall thickness. 
 

 

Figure 2. Wall Thickness ILI Measurements along a Pipeline 
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Figure 3. Proportion of Correct Calls as a Function of Wall Thickness Change 

The wall thickness data in Figure 3 is used to model the probability of correctly identifying unique 

populations as a function of wall thickness differences. Multiple models were explored to fit this data. 

While conventional practice suggests fitting the data to logistic or exponential regression, a model 

based on first principles was developed, focusing on ILI wall thickness measurement error. 

 
When two independent wall thickness measurements are made, we can estimate the probability that 

the two measurements are the same. Let 1 and 2 be the two measurements. We assume both 

measurements have a normally distributed measurement error with mean 0 and standard deviation 

. The true values of the measured quantities are  and . We also assume that the nominal wall 

thicknesses accurately represent the measurements. Any deviation between the nominal and true wall 

thickness is negligible compared to the ILI measurement performance. The measured values can be 

expressed as: =  and =  where ~ (0, ) and ~ (0, ) are the measurement errors 
Using the measurements  and , we can determine what is more likely:  =  or   . We 

calculate the difference, , between the two measurements  and : = = ( ) ( ) = ( ) ( ) 
If  = ,  should be close to 0. Since  and  are normally distributed with the same variance, 

 is normally distributed: ~ ( , 2 ) 
 

Under    = 0: 
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~ (0, 2 ) 
 

The Z-score can then be calculated using the difference between  and : 

= 2  

The probability that the two measurements are the same can be interpreted as the likelihood of 

observing a value as extreme as  under the assumption  = . The standard normal distribution 

can be used to find the probability: 

( ) = 2 | |2 1 
Where:  = standardized Z-score 

 = cumulative distribution function of the standard normal distribution 
 = observed difference between two wall thickness measurements  
 = standard deviation of the ILI wall thickness measurement error 

 

The final probability is the p-value corresponding to the Z-score. The p-value is interpreted as the 

probability of correctly identifying two populations as distinct based on the difference in wall 

thickness measurements observed by the ILI tool. The only unknown parameter in the model is , 

the standard deviation of the ILI measurement performance. Note that  is different from ILI 

performance tolerance. The performance tolerance is a predefined and known threshold that 

specifies the maximum acceptable deviation between the ILI measurements and wall thicknesses that 

can be distinguished, whereas  represents the statistical measure of how much the wall thickness 

measurements typically vary. The model for correctly identifying populations based on wall thickness 

has two parts: ~Binomial( , )  = 2 | | 1, for = 1, … , . 
Figure 4 is a graph showing the curve for some potential values of the parameter  compared to the 

observations. The size of each data point is proportional to the number of observations. 

 

A Bayesian model is used to fit the most likely curve. Given the data, Markov Chain Monte Carlo 

calculates the posterior distributions over the model parameters (Abadi M, et al., 2015). After 

calculating the posterior of , the posterior of the binomial regression curve is used to estimate the 

probability of correctly identifying unique populations as a function of the difference in wall 

thickness measurements. Figure 5 shows a posterior predictive of the binomial regression using the 

posterior of . 
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Figure 4. Probability of Correct Call Model Priors – Wall Thickness 

 

 

Figure 5. Probability of Correct Call Model Posterior – Wall Thickness 

 

The dark orange line in Figure 5 shows the mean predicted probability of correct call. The light 

orange area represents the curve's credible interval, which can be interpreted as the uncertainty in 

the true value of the parameter  based on the sample size of the observed data. 

 

The curve fit is used to determine where populations identified based on a difference in wall thickness 

are most likely or least likely to be incorrect. When the difference in wall thickness is low, confidence 

that two populations are unique is also low. Other attributes may be needed to identify unique 

populations or additional field verification efforts may be warranted. 
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Seam Detection 

Once pipe segments are grouped and classified into sub-populations based on measured wall 

thickness, the next step is to divide the populations further based on whether the segments have a 

detected seam. Seam welded and seamless pipes with the same wall thickness represent two unique 

populations. Discussions with subject matter experts indicate that ILI tools can accurately identify 

the presence or absence of seams, making it unlikely that detecting seams leads to incorrect 

population identification. In a typical scenario, the probability of correct identification based on 

seam detection is estimated as the proportion of correct calls. 

=  
Where: 

 = probability of correctly identifying unique populations based on detecting a change in 
the presence of seam between adjacent pipes  

 = number of correct populations identified based on the change in the identified seam  
 = number of changes in identified the presence or absence of seam 

 

An estimated proportion may be inaccurate when  = 1.0,  = 0.0, or the sample size is small. A 

closed-form estimate exists when using the Beta distribution to model the prior of . The Beta 

distribution is a continuous probability distribution defined over the interval [0, 1]. It is characterized 

by two shape parameters, denoted as  and . When using a Beta distribution to characterize the 

probability of correctly identifying unique populations based on the presence of a seam, the mean 

estimator is: 

= ++ +  
Where:  

 = mean probability of correctly identifying a unique population based on the presence 
of a seam 

 = Beta distribution first shape parameter 
 = Beta distribution second shape parameter 

 

Using a Bayesian estimate with an uninformed prior ( =1, =1), the distribution of the mean 

estimator aligns with the Clopper Pearson interval used for calculating a binomial confidence 

interval.  

Yield Strength 

Given yield strength measurements, the model identifies whether a single identified population is 

more than one by estimating the recall (true positives divided by true positives plus false negatives). 
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Yield strength measurements from ILI runs are used to subdivide populations. Characterizing the 

performance of ILI tools that estimate yield strength and ultimate tensile strength is ongoing, and 

there is uncertainty regarding the bias and measurement error. However, even without precise 

performance characteristics, measurements are used to distinguish populations using the following 

assumptions: 

• The bias and uncertainty of yield strength measurements are consistent across an ILI run, 

and 

• Yield strength for an individual pipe grade follows a unimodal distribution, similar to how 

it is characterized in API 1176 Table D.1 (2016) and CSA Z662 Table O.6 (2023). 

 

Unlike comparing just two measurements, as in the wall thickness example, two populations are now 

being compared. The increased sample size makes it more challenging to determine whether 

individual samples come from one population or another, particularly if the distributions of the two 

pipe grades overlap by less than four standard deviations. 

 

Figure 6 is an example of overlapping yield strength distributions. It is difficult to conclude if a single 

sample (dashed green line) is from pipe grade X52 or X60.  In these instances, the more conservative 

pipe grade (lower yield strength) is typically selected. 

 

Figure 6. Comparing the Z-score of Two Yield Strength Distributions from API 1176 

 

Although pipe grade is challenging to determine from a single measurement, the distribution of many 

samples can provide insight into whether one or more populations are within a group. This model 

aims to determine the likelihood that a population identified by the ILI vendor is a single population 

or multiple sub-populations. 

 

As part of this study, cases that led to incorrect identification of populations based on yield strength 

were reviewed. An example is shown in Figure 7. A sample of pipe segments with similar wall 
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thickness and identified seams was initially assigned to a single population when records indicated 

two pipe grades interspersed along the chainage. When plotting the data in Figure 7 as a histogram 

in Figure 8, the multimodality of the distribution is observed; this population is likely a mixture of 

two populations with different yield strength distributions. 

 

Figure 7. Yield Strength of Pipeline Segments by Chainage 

 

Figure 8. Yield Strength Histogram of Pipeline Segments 

 

Applying a Gaussian Mixture Model (GMM) clustering algorithm to the pipe data in Figure 8 

produces a Bayesian Information Criterion (BIC) difference when the number of subpopulations is 

specified. The BIC is a heuristic for model selection among a finite set of models, where models with 

a lower BIC are typically preferred. Figure 9 shows the results of applying a GMM to the population 

in Figure 8. The left sub-chart shows the results of a GMM with two clusters (k=2), and the right plot 

shows the change in BIC depending on the number of clusters applied to the data. In this case, using 
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a GMM with two distributions (k=2) versus a single distribution (k=1) significantly lowers the BIC, 

suggesting that modelling the data as two distributions with unique means and standard deviations 

is a better fit than treating it as a single distribution. The BIC values also suggest that there are not 

more than two populations in the sample since adding additional clusters does not further reduce 

the value of the BIC. 

 

 

Figure 9. GMM with k=2 on Yield Strength Data 

 

Even though a Gaussian Mixture Model suggests two populations, an engineering decision may group 

them differently. Data in the middle could arise from either distribution. In this case, assuming a 

lower pipe grade may be appropriate when performing engineering analysis. Regardless, we quantify 

the likelihood of correctly identifying unique populations in this project, even if combined 

populations are justified by engineering judgment.  

 

Data reviewed indicates that distribution modality is a useful indicator for sub-populations. The 

estimate of the probability of whether there is one pipe population in a sample of segments is 

characterized as a function of the distribution modality. There is no universally agreed-upon summary 

statistic to quantify the modality of a sample; Sarle’s bimodality coefficient is used to characterize the 

data in this paper (Ellison, 1987). The bimodality coefficient is calculated as follows: 

= + 1 
Where: 

 = bimodality coefficient 
 = skewness 
 = kurtosis 

 

The formula for a finite sample is: 

879
879 https://doi.org/10.52202/078572-0047



Pipeline Pigging and Integrity Management Conference, Houston, January 2025 
 

16 
 

= + 1+ 3( 1)( 2)( 3)  
Where: 

 = bimodality coefficient for a finite sample 
 = sample skewness 
 = excess kurtosis 
 = number of samples 

 

The value of  for the normal distribution is 1/3 (skewness = 0, kurtosis = 3). The value for the 

uniform distribution is 5/9 (skewness = 0, kurtosis = 1.8). Values greater than 5/9 may indicate a 

bimodal, multimodal, or heavily skewed unimodal distribution. 

 

Figure 10 shows the bimodality coefficient for each group of pipes identified as a unique population 

based on pipe grade. The populations are classified as either 1.0 (correctly identified as one 

population) or 0.0 (incorrectly identified as one population). The data point with the highest 

bimodality coefficient is the same example shown in Figures 7 to 9. This data indicates that a 

performance prediction as a function of the bimodality coefficient offers good discrimination; the 

model can distinguish correct and incorrect calls. However, the data are also very imbalanced between 

correct and incorrect calls. The model may need to be revisited if additional incorrect calls that do 

not show multimodality are identified. 

 

Figure 10. Correct and Incorrect Calls as a Function of Yield Strength Bimodality 

 

The data was fit to the inverse logit function to provide the probability of incorrect call as a function 

of the bimodality coefficient:  = ( + ) 
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Where:  
 = inverse of the logit function (logistic sigmoid function) 

 = intercept of the untransformed linear model  
 = slope of the untransformed linear model 
 = bimodality coefficient 

 

A Bayesian model is fit with the following process: ~ ( , ) ~ ( , , = 0) , ~ , ( [ + ]) ,  = 1, … ,  
 

Where: ,  = number of observed successes for bimodality coefficient 
 = number of observations for bimodality coefficient 

 = bimodality coefficient for observation 
 

The data imbalance highlights the advantages of a Bayesian approach. While the limited number of 

incorrect calls indicates the effectiveness of ILI measurements in distinguishing populations, it also 

poses challenges in model fitting and predicting potential errors. For Bayesian models, it is crucial to 

determine the priors. Prior knowledge suggests that a bimodality coefficient greater than 5/9 

indicates subpopulations. This aligns with our data; however, we use caution in our prior selection 

to avoid selecting priors that would overly influence the outcome. Figure 11 shows an example of a 

posterior prediction based on simulated data. 

 

This model will not identify a large population that is incorrectly divided into two populations. 

Rather, it only identifies false negatives: one population is called, but more than one population is 

present. 

 

The bimodality coefficient was chosen as a suitable heuristic to characterize the same inductive 

reasoning that a subject matter expert might employ to subdivide populations following a review of 

ILI measurements. It was chosen over BIC and GMM clustering due to its simplicity. If there is 

insufficient confidence to subdivide a population, all pipe segments are assigned to a single grade, 

typically the grade represented by the lower tail of the entire sample.  
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Figure 11. Probability of Correct Call Model Posterior – Yield Strength  

Performance Model Results 

Table 1 summarizes the models that characterize the performance of an ILI tool in identifying unique 

pipeline populations. For populations divided based on wall thickness, the most likely error and the 

only one observed in the dataset is a false positive. This occurs when two similar populations are 

incorrectly separated due to uncertainty in ILI wall thickness measurements. Similarly, false positives 

are the most likely error for seam detection, where two unique populations are identified when only 

one truly exists. In contrast, the observed errors are false negatives for populations identified by yield 

strength measurements. A single population is identified in these cases, while the underlying data 

contains multiple sub-populations. 

 

Table 1. Model Summary 

Model Order Attribute Probability Model Estimating 

1 Wall Thickness 

= 2 | |2 1 

Where = difference in WT between 

two populations 

Probability that two populations identified as 

different are actually different (false positive) 

2 Seam Detection = ++ +  
 

Probability that two populations identified as 

different are actually different (false positive) 

3 Yield Strength 
= InverseLogit( ( + )) 

Where = Bimodality Coefficient 

Probability that one identified population is 

not actually made up of more than one sub-

population (false negative) 
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Each model captures precision or recall. Seam detection uses a simple binomial confidence interval. 

Wall thickness employs a single-parameter prediction based on tool error. Yield strength fits a 

sigmoid curve based on statistical summaries that mimic ILI data interpretation and the shape of 

pipe grade distributions. 

 

One challenge in developing a population identification model is the imbalanced dataset, which 

contains only a few incorrect calls. The Bayesian models used produce credible intervals that reflect 

the uncertainty inherent in the data imbalance. Future ILI vendor performance specifications for 

population identification could be incorporated as informed priors to address this uncertainty. 

Additionally, model updates may be necessary to account for potential changes in ILI vendor 

procedures and the inclusion of new measurement data. Future ILI runs, and population 

identifications can be validated against these models. A validation framework and statistical test are 

proposed next to determine if future performance fits these models. 

Validation Framework 

Performance Validation 

In the future, new ILI runs may be validated using the models presented in Table 1. Validation refers 

to evaluating the accuracy of the population identifications compared to the expected performance 

from the models. The validation procedure uses a statistical test to determine whether population 

identifications are performing as the models suggest. 

 

In the validation process, the main objective is to determine if the ILI vendor performs worse than 

the past performance in which the model was calibrated. As is typical of a statistical hypothesis test, 

the validation does not confirm with statistical confidence that the identifications met the expected 

performance. Instead, it evaluates whether there is statistical evidence that the population 

identifications did not meet the performance specified by the model.  

 

The performance validation is calculated using a model calibration measure.  Calibration measures 

how close the predicted probabilities are to the observed rates for any configuration of the model's 

independent variables (D’Agostino et al., 1998; Harrell et al., 1996). Perfect calibration results when 

the predicted number of correctly identified populations aligns with the model's predicted outcomes. 

Hosmer Lemeshow Test 

Measures of calibration for binomial outcomes are often statistics which partition the data into 

groups and check how the average of the predicted probabilities compares with the observed 

proportion of success in each group. 

 

Hosmer and Lemeshow (1980) produced a widely used statistic to test a given model's ability to fit a 

dataset. Let the sample size be . The most common version of this test arranges the subjects 

883
883 https://doi.org/10.52202/078572-0047



Pipeline Pigging and Integrity Management Conference, Houston, January 2025 
 

20 
 

according to ascending predicted probabilities. It divides them into  groups of the same size so that 

the first group contains the /  subjects with the smallest estimated event probabilities; the second 

group includes the following /  subjects with the next smallest estimated event probabilities. The 

Q-th group contains the /  subjects having the largest estimated event probabilities. 

 

The grouping is usually out of =10 deciles, but any other choice of several groups is possible. Given 

the groups, the Hosmer-Lemeshow test compares the observed number of positive outcomes 

(prevalence or observed frequency) with the mean of the predicted probabilities (expected frequency) 

in each group. The more the groups’ observed frequencies are close to the corresponding expected 

frequencies, the better the model calibration. The goodness of fit is quantified using the Hosmer-

Lemeshow formula: 

= 1  
Where:  

 = Hosmer-Lemeshow test statistic 
 = groups of data  
 = number of observations in the th group 
 = number of positive outcomes (correct calls) for the th group 
 = average probabilities predicted by the model for the th group 

 

Under the null hypothesis that the regression model is correct, the statistic  has approximately an 

asymptotic chi-squared distribution with    degrees of freedom (Giancristofaro and Salmaso, 

2003). = 1 ( , ) 
Where:  

 = p-value from Hosmer-Lemeshow test statistic 
 = Hosmer-Lemeshow test statistic 

 = cumulative distribution function of chi-squared distribution  
 = degrees of freedom 

 = number of model parameters (wall thickness: = 1, yield strength: = 2) 
 

Consequently, in the Hosmer-Lemeshow goodness of fit test, an observed chi-squared value less than 

the critical value of the chi-squared distribution with -2 degrees of freedom at the 0.05 significance 

level indicates a good fit of the model. Because of the attributes used in this project, many variables 

will result in expected probabilities close to 1.0, which results in large  values. To address this, an 

adjusted Hosmer-Lemeshow test is proposed that adjusts for small sample sizes (Giancristofaro and 

Salmaso, 2003): 

= + 1 1 + 1  
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Where:  
 = Modified Hosmer-Lemeshow test statistic  

 

The modified Hosmer-Lemeshow statistic can be computed for new verified datasets to determine 

whether the data follows the model. More specifically, the test determines the goodness of fit of the 

latest data to the performance model (from the previous section). The model does not characterize 

the data if the test's null hypothesis is rejected. 

 

One important consideration when calculating the Hosmer-Lemeshow test is that the model may be 

rejected if the verified populations performed better than the model; the test does not evaluate if the 

new observations are performing better or worse, just whether the model is a good fit. When the 

model is rejected, the data should be reviewed to determine if this is due to better-than-expected 

performance. 

 

The model validation procedure outlined in this section is similar to the API 1163 Level 2 

performance validation procedure, and the model fitting procedures in Section 2 are similar to the 

API 1163 Level 3 assessment. 

Conclusion 

49 CFR §192.607 (PHMSA 2019) defines the data requirements for pipeline material properties and 

attributes. Recent ILI technologies have shown promise in identifying pipe populations and are likely 

to become a central tool in material verification programs. The framework's key objective is to validate 

ILI tools' performance to define pipe segment populations based on the 49 CFR §192.607 criteria 

using statistical tools similar to the performance validation steps for ILI measurement performance 

defined in API 1163. 

 

ILI vendors determine individual pipeline populations based on ILI measurements and follows a 

hierarchical procedure to subdivide populations based on measured pipeline attributes. The 

performance of ILI population identification based on wall thickness, seam identification, and yield 

strength was assessed, and models were developed for each attribute of varying complexity. 

 

Identifying pipe populations is unique compared to other measurement performance methods in the 

pipeline industry, as it relies more so on Type B uncertainty through subject matter expert judgment. 

Certain patterns in ILI measurement data are difficult to discern solely through systematic statistical 

tests or rule-based algorithms, necessitating data interpretation from the ILI vendor. In this project, 

the bimodality coefficient is proposed as a heuristic to estimate the probability of sub-populations 

within a sample of pipe segments with yield strength measurements. Mixture models and BIC are 

also considered as potential heuristic candidates, albeit with increased computational complexity. 
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The models fit for each of the measured pipeline attributes (wall thickness, seam detection, yield 

strength) can be used to estimate the performance of future population identifications and to 

determine which identified populations are most likely to be incorrectly called. In practice, the 

models are used in an evaluation spreadsheet tool to help an operator prioritize the review of ILI 

identified populations and assist in identifying false positives and false negatives. 

 

The modified Hosmer-Lemeshow test is proposed as a method to validate future runs and determine 

if performance aligns with models fit to previous ILI population classifications, which are adopted as 

the current ILI performance specification. This test may also be applicable to other ILI performance 

evaluations. 

References 

Abadi M, et al. 2015. TensorFlow: Large-scale machine learning on heterogeneous systems. Software 
available from https://www.tensorflow.org/probability/examples/Eight_Schools 

 
American Petroleum Institute (API). 2021. In-line Inspection Systems Qualification Standard, API 

1163, Third Edition. 
 
American Petroleum Institute (API). 2022. Recommended Practice for Assessment and Management 

of Cracking in Pipelines, API 1176, First Edition. 
 
Canadian Standards Association (CSA). 2023. Oil and Gas Pipeline Systems, CSA Z662. Toronto, 

ON. 
 
Giancristofaro, Rosa & Salmaso, Luigi. 2003. Model performance analysis and model validation in 

logistic regression. Statistica. 2. 10.6092/issn.1973-2201/358. 
 
Joint Committee for Guides in Metrology (JCGM). 2008. Evaluation of measurement data - Guide 

to the expression of uncertainty in measurement (GUM). 100:2008. 
 
McElreath, Richard. 2020. Statistical Rethinking: A Bayesian Course with Examples in R and STAN. 
 
Tarb , Nicolae, Mihai-Lucian Voncil , and Costin-Anton Boiangiu. 2022. On Generalizing Sarle’s 

Bimodality Coefficient as a Path towards a Newly Composite Bimodality Coefficient. 
Mathematics 10, no. 7: 1042. https://doi.org/10.3390/math10071042 

 
Title 49, Code of Federal Regulations. 49 CFR § 192.607. https://www.ecfr.gov/current/title 

49/section-192.607. Accessed 2024. 
 
Vincent, Benjamin. Accessed 2024. Binomial regression. In: PyMC Examples. Ed. by PyMC Team. 

DOI: 10.5281/zenodo.5654871. 

886
886https://doi.org/10.52202/078572-0047


	202  Estimating ILI Tool Performance in Identifying Unique Pipe Populations for Material Verification



