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Abstract   
 

ensitivity analysis is of paramount importance for improving the accuracy and robustness of semi-
quantitative, quantitative, and probabilistic risk models in oil and gas pipeline risk analysis. For 

gas pipelines, a sensitivity analysis of the risk models is a requirement under 49 CFR Part 192 
192.917(4)c. The inherent complexity and interdependency of factors influencing pipeline risk 
require an in-depth comprehension of sensitivity analysis methods available. Fitness-for-service 
calculators have been integrated in some quantitative models; though extensive validation work has 
been reported, a formal sensitivity analysis has been often omitted in any benchmarks and reviews. 
The primary objective of this paper is to provide an in-depth review of various sensitivity analysis 
techniques, highlighting their strengths, limitations, and practical applications in pipeline risk 
assessment. The comparative analysis is conducted based on multiple criteria, comprising accuracy, 
robustness of methods, applicability to different risk models and calculators, linear/non-linear 
compatibility, computational requirements, ability to capture interactions between risk variables and 
handle uncertainty, and variabilities that impact pipeline risk assessment. The findings of the 
comparative study provide valuable insights into the strengths and limitations of various methods, 
allowing practitioners to select techniques based on their modelling objectives and data availability. 
Two cases are provided to illustrate the practical application of some of these techniques and their 
incorporation into risk models. 
 
 

Introduction 
 
Risk models are prominent pipeline integrity management (PIM) tools used to make data-driven 
decisions. As computing power has increased and data acquisition methods have proliferated, risk 
models have become more complex. Moreover, the transition to Quantitative Risk Assessment 
(QRA) techniques and the heightened intricacy of the corresponding risk models requires a greater 
amount of specific high-quality information to be provided as inputs for the risk models, including 
meta data generated during their production. The PIM personnel is not necessarily informed on the 
information requirements. Therefore, a good understanding of the effect of data uncertainty upon 
the risk model results is crucial to effectively and ethically apply the model in any decision-making 
process. In the United States, 49 CFR 192.917(4)c [1] specifies the implementation of a Sensitivity 
analysis (SA) on the factors used to characterize both the likelihood and consequence of failure for 
gas pipelines.  
 
Two types of uncertainties arise in complex risk models: (i) stochastic uncertainty [2], which is the 
inherent randomness of the model, and (ii) subjective or epistemic uncertainty, which is equivalent 
to incomplete knowledge [3]. In pipeline risk modelling, stochastic uncertainty occurs due to the 
numerous assessed threat scenarios. On the other hand, epistemic uncertainties arise from the 
numerous uncertain parameters involved in estimating the probabilities and consequences of these 
threat scenarios[4,5]. Epistemic uncertainty can be broken down into vagueness, ambiguity, and 
subjectivity inherent in mathematical models [5–7]. 
 
Sensitivity analysis and uncertainty analysis are the primary methods utilized to investigate and assess 
the epistemic and stochastic uncertainties of complex mathematical models respectively [8]. 
Sensitivity analysis (SA) has been defined by Saltelli, et. al. [9] as “the study of how the variation in 
the output of a model (numerical or otherwise) can be apportioned, qualitatively or quantitatively, 
to different sources of variations, and of how the given model depends upon the information fed 

S 
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into it”. However, uncertainty analysis is defined as characterizing the uncertainty associated with 
model predictions without attributing the uncertainty primarily to particular assumptions [10–12]. 
In other words, the purpose of uncertainty analysis is to ascertain the overall level of uncertainty in 
the results of an analysis, whereas the goal of SA is to determine the relative importance of each 
uncertain input to that overall level of uncertainty. The inputs of interest in sensitivity analysis, often 
called 'factors', can encompass various elements such as model parameters, forcing variables, 
boundary and initial conditions, choices of model structural configurations, as well as assumptions 
and constraints. The outputs can consist of various aspects of the model's responses, including those 
that exhibit spatial and temporal variations. They can also include objective functions, such as 
production or cost functions in cost-benefit analysis, or error functions used for model calibration 
[13]. 
 
SA provides the following benefits to risk modelling: (i) identifying the most significant factors or 
parameters that have a substantial impact on the output of a risk model [14–17]; (ii) exploring 
interactions and casualties within the risk models [5,13,18]; (iii) enabling efficient resource allocation 
for further investigation or data collection [7,8,13,17]; (iv) validating and verifying the mathematical 
model; (v) reducing dimensionality of risk models by removing redundant variables[15]; (vi) 
determining direction of change and marginal behaviour of the model with respect to one or more 
inputs of interest [19]; and (vii) assessing the reliability and robustness of the models [17].  Generally, 
sensitivity analysis seeks to utilize the notion of 'sparsity of factors’ principle which suggests that, 
frequently, only a small subset of factors in a system have a notable impact on a specific system output.  
Several SA techniques search the input space by traversing one-dimensional corridors, leaving most 
of the input factors unexplored. According to recent research [8], a considerable proportion of highly 
cited papers (i.e., 42 percent) fail to adequately search the input parameters space. SA is crucial, 
however, its implementation often encounters various issues that are prevalent across all research 
disciplines, such as ambiguity in terminology and statistically flawed data acquisition and processing 
methods that may lead to underestimate the model uncertainty. In addition, though SA and 
uncertainty analysis are distinct practices, modelers frequently mix the two and perform an 
uncertainty analysis and present it as a SA or vice versa. 
 
SA is commonly understood as a procedure wherein one or more variables in a given model are 
altered with the intention of assessing their impacts on a desired outcome. Local Sensitivity Analysis 
(LSA) is the common name for these types of evaluations, as they only determine the sensitivity of 
the problem in the vicinity of a "nominal point" within the problem space [13]. LSA is 
straightforward, intuitive, and suitable for extremely particular situations. LSA techniques have been 
criticized for providing only a localized view of the problem space, particularly when applied to 
investigate parameter importance in mathematical modelling [8]. Moreover, they are not valid for 
nonlinear models. Furthermore, LSA techniques fail to consider the interrelationships that exist 
between variables of risk models.  
 
In recent years, there has been a notable emphasis in the field of SA on a concept known as "Global 
Sensitivity Analysis (GSA)"[8,13]. GSA aims to offer a comprehensive view of the ways in which 
various factors operate and interact throughout the entire problem space to impact a specific function 
of the system output. Among all GSA techniques, eFAST (Extended Fourier Amplitude Sensitivity 
Test) is highly recommended in many scenarios due to several notable strengths: (i) handling non-
linear models; (ii) evaluates the entire input space; (iii) distinguishing between the effects of different 
input variables based on their unique frequency signatures; (iv) Efficiency in handling many input 
variables; (v) improved accuracy over FAST; (vi) improved convergence over Sobol; and (vii) capability 
to identify interactions. 
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The rest of the paper is organized in the following sections: (i) a brief review of both local and global 
SA techniques highlighting gaps, (ii) a comparative study and discussion about the right criteria when 
choosing a technique, and (iii) two case studies to illustrate the practical use of global simulation-
based SA method (i.e., eFAST) for quantitative risk models. 
 
 

Sensitivity analysis techniques  
 
Local sensitivity analysis (LSA) or one-at-a-time (OAT) techniques 
 
One way to conduct SA is to vary one input parameter of the model at a time while holding the 
others constant. This is arguably the simplest SA approach available for deterministic models, but it 
is not fit for probabilistic models. The nominal values of the input parameters are often used for this 
type of one-at-a-time (OAT) sampling. The extreme values of the distribution are one of the most 
common ways to determine the sampling points of interest, although there are many more 
possibilities. 
 
LSA(a): Pearson correlation coefficients 
The most basic form of LSA involves determining the linear correlation between two variables: an 
input  and an output  derived from data that is quasi-randomly sampled [9]. The idea is to 
approximate the full risk model with a linear surrogate, i.e. . Pearson's correlation 
coefficient (Equation 1) is the covariance of the two variables divided by the product of their standard 
deviations. The widely used Pearson correlation coefficient, Spearman rank correlation coefficient, 
and Partial correlation coefficient are typical local sensitivity methods. 
 
The Pearson correlation coefficient is symmetric. A key mathematical property of the Pearson 
correlation coefficient is that it is invariant under separate changes in location and scale in the two 
variables. 

,  ,                                                        (1) 

where  denotes the variance and  the covariance.  
 
LSA(b): Spearman rank correlation coefficients 
In contrast to the Pearson correlation coefficient, the Spearman rank correlation coefficient, shown 
in Equation 2, imposes less stringent data condition requirements. A correlation between the 
observed values of the two variables is sufficient, or a monotonic relationship derived from a 
substantial quantity of continuous data is sufficient, irrespective of the two variables.  1 ,                                                (2) 
where R is the rank of  and . As a normalized sensitivity measure, the square  of the Pearson 
coefficient also indicates the proportion of the output variance attributable to the input .  ,                                                        (3) 

where the sensitivity measure  accounts for the contributions of .  
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LSA(c): Partial correlation coefficients 
A partial correlation coefficient is utilized to assess the degree of dependence between two variables 
in a population or data set that contains more than two characteristics. This strength of dependence 
is not considered when both variables change in response to variations in a subset of the other 
variables. Therefore, the Partial Correlation Coefficient (PCC) is the correlation coefficient where 
the linear effect of the other terms is removed, i.e. for , , … , , , … ,  we have: 

| cov ,                                             (4) 

The result of correlation coefficient indices is a number between –1 and 1 that measures the strength 
and direction of the relationship between two variables. As with covariance itself, the measure can 
only reflect a linear correlation of variables and ignores many other types of relationships or 
correlations. The method demonstrates a comparatively low computational cost that is nearly 
unaffected by the number of inputs. The quantity of model iterations necessary to achieve satisfactory 
statistical accuracy is model-dependent. 
 
Global sensitivity analysis (GSA) techniques  
 
GSA(a): Morris method 
The Morris Method employs finite difference approximations for SA and operates on the principle 
that estimating derivatives by moving in one dimension at a time and using sufficiently large steps 
can yield robust contributions to the overall sensitivity measurement. The procedure involves: 

1. Selecting a random starting point in the input space. 
2. Choosing a random direction and altering only the corresponding variable by . 
3. Estimating the derivative based on this single-variable perturbation and repeating the 

process. 

Continuing this process through numerous iterations allows the mean of these derivative estimates 
to serve as a global sensitivity index. This approach enhances computational efficiency by utilizing 
each simulation for dual derivative estimates, offering a more resourceful alternative to other 
methods. While it focuses on average changes rather than dissecting total variance, its computational 
advantage is compelling for preliminary global sensitivity assessments.  
 
To refine the Morris Method for practical applications, certain adjustments are necessary. It is 
important to account for the potential nullification of positive and negative changes, which suggests 
the use of absolute or squared differences for a more accurate variance measure. Moreover, it's critical 
to ensure comprehensive exploration of the input space. This can be achieved by defining the 
distance between trajectories as the cumulative geometric distance between corresponding point 
pairs. By generating an excess number of trajectories and selecting those with the greatest distances, 
the method attains a broad coverage of the input domain. When the implementation and 
computational cost of a model is high, the relative affordability of this technique makes it a viable 
option for conducting SA. 
 

GSA(b): Derivative-based global sensitivity measures (DGSM) 
To surpass the limitations of a linear model, successive linearization may be desired. Given that 
derivatives involve linearization, it is possible to evaluate derivatives on an average. The Morris OAT 
sensitivity measure is contingent upon a nominal point  and it varies in response to a change in . 
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To address this inefficiency, one can calculate the average of  across the parameter space which 
is a unit hypercube H . Therefore, new sensitivity measures known as Derivative-based Global 
Sensitivity Measures (DGSM) can be defined.  
 
Consider a function , … , , where , … ,  are independent random variables, defined in 
the Euclidian space  , with cumulative density functions (CDF) of . The following DGSM 
was introduced[20]. 

                                    (5) 

Then the mean measure can be simply defined as:                                                6  
Therefore, a global variance estimate is:                                                                          7  
 
GSA(c-1): Variance-based methods: Sobol method 
 
Variance-based approaches rely on the premise, proposed by Saltelli et al., [17], that the variance 
alone is enough to characterize the uncertainty of the output. Variance-based GSA techniques 
determine the effect on model outcome as a function of an appropriate parameter probability density 
function by decomposing the uncertainty of outputs for the corresponding inputs.  
 
Sobol's method [21] is a genuine technique for nonlinear decomposition of variance, making it highly 
regarded as one of the most reliable approaches. The approach partitions the variance in the system's 
or model's output into fractions that can be allocated to individual inputs or clusters of inputs. First 
order and total order effects are the two primary sensitivity measures used in this method. The first 
order effects consider the primary effects for variations in output caused by the respective input. The 
total order effects represent the total contributions to the output variance related to the 
corresponding input, which include both first order and higher order effects owing to interactions 
between inputs. 
 
The objective is to represent the output variance as a finite sum of elements that are arranged in 
ascending order. Each of the terms denotes the proportion of the output variance attributable to one 
input variable (first order terms) or the interaction variance of multiple input variables (higher order 
terms). Subsequently, the Sobol's sensitivity indices are established by normalizing these partial 
variances by the output variance.  
 

GSA(c-2): Variance-based methods: FAST and eFAST methods 
Two widely used and well-established GSA methodologies are the Fourier Amplitude Sensitivity Test 
(FAST) and the extended FAST (eFAST) which are faster ways of estimating the total order sensitivity 
indices [17,22]. The FAST method modified Sobol method allowing faster convergence. The FAST 
method allocates the variance through spectral analysis, following which the input space is explored 
with sinusoidal functions of varying frequencies for each input factor or dimension [10,14,17].  
 
FAST transforms the variables  onto the space [0,1]. Then, instead of the linear decomposition, it 
decomposes into a Fourier basis: 
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 , , … , . . . … exp 2                    (8) 

where 

… . . . , , … , exp 2                            (9) 

The analysis of variances decomposition partitions the total variance of the model as a sum of 
variances of orthogonal functions for all possible subsets of the input variables. 
The first order conditional variance is thus: 2                                                       (10) 

where … …  .  

FAST can be implemented using the Ergodic Theorem which is defined as:    2                                                        (11) 

According to the Ergodic theorem, if  are irrational numbers, the dynamical system will not repeat 
values and will thus provide a solution that is densely distributed across the search space. This means 
that the multidimensional integral can be approximated by the integral over a single line. 
 
One can approximate this to obtain a more simplified expression for the integral. By considering  
as integers, it can be observed that the integral is periodic. Therefore, it is sufficient to integrate 
throughout the interval of 2 .  
 
A longer period yields a more accurate representation of the space and hence a more precise 
approximation, while potentially necessitating a greater number of data points. Nevertheless, this 
conversion simplifies the genuine integrals into straightforward one-dimensional quadrature that 
may be effectively calculated. 
 
To obtain the total index using this approach, it is necessary to compute the total contribution of the 
complementary set, denoted as , and subsequently: 1                                                             (12) 

It is important to note that this is a rapid method to calculate the overall impact of each variable, 
encompassing all higher-order nonlinear interactions, all derived from one-dimensional integrals. 
The extension is referred to as eFAST which is highly regarded in many scenarios due to several 
notable strengths: 

1. Handling non-linear and non-additive models: eFAST is particularly effective in analysing 
complex models with non-linear or non-additive effects. It can capture both the main effects 
and the interaction effects among input variables. 

2. Global SA: as a GSA method, eFAST evaluates the entire input space, as opposed to local 
methods that analyse sensitivity at a specific point in the input space. This comprehensive 
approach allows eFAST to provide more robust and generalizable insights. 

3. Frequency domain analysis: eFAST operates in the frequency domain, using Fourier 
transforms to decompose the model output into frequency components. This allows it to 
distinguish between the effects of different input variables based on their unique frequency 
signatures. 
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4. Efficiency in handling many input variables: eFAST is more computationally efficient 
compared to some other global methods, particularly when dealing with a large number of 
input variables. This is due to its use of spectral decomposition, which can efficiently separate 
the effects of each input variable. 

5. Improved accuracy over FAST: eFAST extends the original FAST method by incorporating 
a wider range of frequency harmonics, allowing for the detection of higher-order interactions 
between variables. This leads to improved accuracy in the sensitivity estimates. 

6. Capability to identify non-linear interactions: eFAST is adept at identifying non-linear 
interactions between input variables, a crucial aspect for many complex systems where such 
interactions are significant. 

 
GSA(d): Density-based methods 
Density-based GSA methods compute the sensitivity of the inputs and their interactions by 
considering the complete Probability Density Function (PDF) of the model output. Their popularity 
stems from the fact that density-based SA methods can circumvent certain restrictions associated with 
interpreting variance-based measures when model input dependencies are present. Nevertheless, in 
situations involving a substantial number of model inputs (high dimensionality) or computation 
times of the model or function exceeding a few minutes, their estimation may become impracticable. 
 
Two Density-based GSA methods are DELTA [23] and PAWN [24]. The DELTA ( ) approach is a 
density-based SA method that is not influenced by the method used to generate the samples. This 
method calculates the first order sensitivity and the  (similar to total sensitivity) for each input 
parameter. DELTA tries to evaluate the impact of the entire input distribution on the complete 
output distribution, without considering any specific point of the output. PAWN is called after the 
authors and its purpose is to calculate Density-based SA metrics in a more efficient manner. The 
main concept is to define output distributions based on their Cumulative Distribution Functions, 
which are simpler to calculate compared to Probability Density Functions. One benefit of using 
PAWN is the ability to calculate sensitivity indices not only for the entire range of output fluctuation, 
but also for a specific sub-range. This is particularly valuable in scenarios when there is a specific area 
of the output distribution that is of interest. 
 
Sampling strategies and Monte Carlo simulation  
 
It is important to observe that each expectation involves an integral, so the variance is defined as 
integrals of integrals, which makes this computation quite complex. Therefore, rather of directly 
computing the integrals, Monte Carlo estimators are frequently employed. Instead of only relying on 
a pure Monte Carlo approach, it is common practice to employ a low-discrepancy sequence, which 
is a type of quasi-Monte Carlo method, to efficiently sample the search space. 
There are two primary categories of structures for low discrepancy point sets and sequences: lattices 
and digital nets/sequences. For additional information on these constructions and their attributes, 
refer to [25]. Sobol sequences [26] are commonly employed as specific instances of quasi-random (or 
low discrepancy) sequences of a given size.  

The low-discrepancy characteristics of Sobol' sequences deteriorate as the dimension of the input 
space increases. The rate of convergence is adversely impacted if the crucial inputs are situated in the 
final components of inputs. Consequently, if there is an initial ranking of inputs based on their 
relevance, it would be advantageous to sample the inputs in decreasing order of importance to 
improve the convergence of sensitivity estimates. 
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The Latin Hypercube sampling (LHS) is another frequently used quasi-Monte Carlo sequence that 
extends the concept of the Latin Square. In the Latin Hypercube, only one point is assigned in each 
row, column, and so on, resulting in a uniform distribution across a space with multiple dimensions.  
  
 

Comparative analysis of SA techniques  
 
A comparative analysis framework was developed to evaluate the different SA methodologies. This 
framework focused on several dimensions, including accuracy, robustness of methods, applicability 
to different risk models and calculators, linear/non-linear compatibility, computational 
requirements, ability to capture interactions between risk variables and handle uncertainty and 
variabilities in pipeline risk assessment. Each method was assessed based on these criteria to 
understand its suitability and effectiveness in different risk assessment contexts. Each criterion is 
defined as follows: 

1. Accuracy: The degree to which the SA method can correctly estimate the true impact of 
input variables on the output of the model. High accuracy means the method can provide 
reliable insights into how input variations affect the output. 

2. Robustness: The ability of the method to produce consistent results under different 
conditions, such as the presence of outliers, non-normal distributions, or model non-
linearities. A robust method maintains its performance even when the assumptions are 
violated to some extent. 

3. Applicability to Risk Models: This criterion assesses how well the SA method can be applied 
to risk models, which often contain complex interactions and non-linear behaviour. It 
reflects the method's flexibility and relevance to models used in risk assessment. 

4. Linear/Non-linear Compatibility: Indicates whether the method is suitable for linear 
relationships only, or if it can also accommodate non-linear relationships between input and 
output variables. Non-linear compatibility is essential for analysing systems with complex 
dynamics. 

5. Computational Requirement: The computational resources needed to perform the analysis, 
including time and processing power. Methods with high computational requirements may 
be prohibitive for models that require numerous or time-consuming simulations. 

6. Ability to Capture Interactions: The method's capacity to identify and quantify interactions 
among input variables, which is particularly important in systems where the combined effect 
of inputs is not simply the sum of their individual effects. 

 
Local SA methods are highly accurate around specific local points but may not accurately represent 
the system's behaviour in its entirety. Global SA methods, including variance-based techniques like 
Sobol' indices, generally offer high accuracy across the entire input space, making them invaluable 
for complex, non-linear models. 
 
Global methods typically provide more robust results than local methods. They are designed to 
evaluate the impact of input variations across the entire model space, thereby offering insights that 
are more generalizable. However, methods like the Morris Method, while offering a global 
perspective, may not be as robust in capturing intricate model interactions as more comprehensive 
global techniques. 
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Local methods are more applicable to simpler or well-understood models, whereas global methods 
are better suited for complex, multi-input models. Techniques like FAST and eFAST are particularly 
applicable for evaluating first-order effects and interactions in a wide range of models. While local 
methods are best suited for linear or mildly non-linear models, global methods like eFAST and 
variance-based methods are compatible with both linear and highly non-linear models, capable of 
handling complex interactions effectively. 
 
Computational Requirement is a significant consideration, as global methods are generally more 
computationally intensive. Variance-based methods, for instance, require a large number of model 
evaluations. In contrast, local methods and correlation coefficients like Spearman and Pearson are 
computationally more efficient, though they offer fewer comprehensive insights. Global methods are 
superior in capturing interactions between variables. Techniques like the PAWN Method and eFAST 
are specifically designed to identify complex interactions, a feature that local methods and simpler 
correlation coefficients typically lack. Efficiency is a trade-off between computational cost and the 
depth of insights provided. Local methods and correlation coefficients are highly efficient but may 
lack depth in analysis. Global methods provide a more thorough analysis but at a higher 
computational and time cost. Table 1 summarizes the comparison of these SA methods, providing a 
clear overview of their characteristics and suitability for different types of risk assessment models.  
 

Table 1. Comparison of GSA and LSA methods 
 

SA 
Methods 

Type Accuracy Robustness Applicability Compatibility 
Computational 

requirement 
Capturing 

interactions 
Variance-
based 
methods 

Global       

Morris 
method 

Global       

FAST Global       
eFAST Global       
DGSM Global       
DELTA 
method 

Global       

PAWN 
method 

Global       

Spearman 
rank 
correlation 

Local       

Pearson 
correlation 
coefficient 

Local       

Partial 
correlation 
coefficient 

Local       

 
Table 1 Legend: 

: High or Excellent 
:  Moderate or Good 

:  Low or Fair 
(Blank): Not applicable or Poor 
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The choice of an SA method hinges on the specific requirements of the risk model in question, the 
nature of the system under study, and the resources available for the analysis. A nuanced 
understanding of each method's strengths and limitations is crucial for selecting the most appropriate 
technique for a given risk assessment task. 
 
 

Case studies  
 
ASME Modified B31G calculator 
 
Most Qualitative Risk Assessment (QRA) models calculate a Probability of Exceedance (POE), or 
Probability of Failure (POF) based on the In-Line Inspection (ILI) tool capabilities coupled with 
fitness-for-service (FFS) calculators. For example, a simple probabilistic corrosion model would 
perform a Monte-Carlo analysis to assess the limit state of the wall loss indications reported by the 
latest ILI run. FFS calculators, such as Modified ASME B31G and Modified LnSec, have been 
validated, and their degree of conservatism and application range has been reported. However, a SA 
is not usually part of the validation process. Yet, a sense of the parameters affecting the estimated 
burst pressure has been developed from the constant use of the FFS calculators; safety factors affecting 
the flaw dimensions are commonly introduced to compensate for the inaccuracy inspection 
technique, and flaw depth is considered to have more impact on the outcome than the other two 
flaw dimensions.  
 
The ASME Modified B31G Remaining Strength of Corroded Pipeline methodology (Mod B31G) is 
commonly used for the burst pressure calculations (i. e. the limit state) for corrosion features. Two 
different domains were considered for the SA of the burst pressure calculator: (1) an extended 
domain that covers as many combinations as possible of pipe dimensions, material properties and 
flaw sizes, and (2) selected cases with representative size and material property variations within a 
single pipe, and flaw measuring errors (i. e. sizing accuracy) representative of the current inspection 
methods.    
 
The intervals for the pipe dimensions (D and t) were selected to represent the inventory installed 
with most operators in North America. And additional condition of 4t < D was introduced. There 
are some limitations to the linear distributions: outside diameter and wall thickness of installed 
vintage pipe are generally limited to combinations specified in earlier version of API 5L. In addition, 
some combinations would not be realistic from an engineering perspective, such as thin-walled pipe 
with a large diameter. Still running such a general case is essential to assess the applicability of the 
model. The parametrization used for the first scenario is presented in the following Table: 
 

Table 3. Proposed parametrization for Mod B31G scenario 1 
 

Parameter Variable Units Distribution Min Value Max Value 

X1 D in Uniform 2 60 

X2 l in Uniform 1 100 

X3 t in Uniform 0.1 0.5 

X4 d in Uniform 0.05*t 0.8*t 

X5 YS psi Uniform 20,000 85,000 
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Figure 1 presents an array of scatter plots correlating five distinct risk variables (X1 through X5) with 
the model output (Y). Each plot is annotated with a Pearson correlation coefficient (r), indicative of 
the strength and direction of the linear relationship between the corresponding risk variable and the 
output. The values of the Pearson correlation coefficient range from -1 to +1, where +1 implies a 
perfect positive linear correlation, 0 indicates no linear correlation, and -1 represents a perfect 
negative linear correlation. 
 
For X1 (the outside diameter), we observe a strong negative linear correlation (r = -0.55), suggesting 
that as X1 increases, Y (the burst pressure) tends to decrease. In contrast, X2 (flaw length) exhibits an 
r value of -0.04, which points to a negligible linear relationship with Y. Similarly, X4 (flaw depth) 
shows an r value of -0.01, further indicating a lack of any significant linear correlation with the 
output. X3 (wall thickness) and X5 (yield strength), with r values of 0.25 and 0.2, respectively, 
demonstrate weak positive linear relationships, indicating that higher values of these variables are 
associated with higher output values to a small degree. 
 
These scatter plots are instrumental in identifying which risk variables have a more pronounced linear 
influence on the output, thus guiding risk management strategies. Variables with higher absolute 
values of the Pearson correlation coefficient, such as X1 (outside diameter), are likely to be prioritized 
for control or mitigation due to their stronger linear association with the output. 
 

 
Figure 1. Pearson correlation coefficient plot for Mod B31G scenario 1  

The tornado chart in Figure 2 shows the sensitivity indices for the set of input variables, namely X1 
through X5, in relation to the output of the Mod B31G model (burst pressure). Each horizontal bar 
represents the extent of influence that each variable exerts, with the main effects delineated in 
turquoise and the interaction effects in white. 
 
From the chart, it is discernible that the outside diameter (X1) stands out with the highest total order 
sensitivity index, demonstrating the most significant combined effect on the model's output. This is 
evidenced by the turquoise segment of the bar corresponding to X1, which extends considerably 
further than those of the other variables, coupled with an interaction effect denoted by the white 
segment, culminating in a total index of approximately 0.8205. 
 
In contrast, flaw length (X2) exhibits the least influence with a negligible main effect and an 
inconsequential interaction effect, leading to a minimal total sensitivity index close to 0.00692. The 
other variables, pipe wall thickness (X3) and flaw depth (X4), depict moderate main effects and very 
minor interaction effects, with total sensitivity indices of approximately 0.19445 and 0.12378, 
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respectively. Meanwhile, Yield Strength (X5) presents a slight main effect and a total index of about 
0.10766. In this general case, pipe dimensions are the factors with more impact on the outcome (i. 
e. have higher sensitivity factors), followed by the material properties (YS). On the contrary, the flaw 
dimensions are the factors with the least impact upon Mod B31G, in the general case. 
 

 

Figure 2. Tornado chart for Mod B31G scenario 1 

Three additional scenarios corresponding to actual flaw assessments were considered. The pipe 
dimensions consider the local variations along a single pipe. The yield strength distribution 
corresponds to the variations reported for API 5L Grade B and flaw size corresponds to common ILI 
tool accuracy: the flaw depth accuracy was assumed to be within 10% the size for 99.7% of 
indications, while the length accuracy was assumed to be within 20% the size for 99.7% of 
indications.  
 
Scenario A corresponds an API 5L Grade B, 3-in pipe with a wall loss of 50% the pipe wall and a 
flaw length of 25-in. Scenario B is an API 5L Grade B, 12.5-in pipe with a wall loss of 50% the pipe 
wall and a flaw only 2-in long. Scenario C corresponds to an API 5L Grade B, 25-in pipe and a 50-in 
long flaw with a depth of 50% the pipe wall thickness.  Table 4 presents the parametrization used for 
scenarios A, B and C.  
 

Table 4. Proposed parametrization for Mod B31G (scenarios A to C) 
 

    Scenario A Scenario B Scenario C 

Parameter Variable Units Distribution Mean STD Mean STD Mean STD 

X1 D In Normal 3 0.0018 12.5 0.0075 25 0.0018 

X2 l In Normal 25 0.75 2 0.06 50 1.5 

X3 t In Normal 0.15554 0.00154 0.22119 0.00219 0.37875 0.00375 

X4 d In Normal 0.077 0.00513 0.1095 0.0073 0.1875 0.0125 

X5 YS Psi Normal 38,500 1,225 38,500 1,225 38,500 1,225 

 
The tornado chart in Figure 3 shows the sensitivity indices for Scenario A. The flaw depth (X4) has 
the highest total order sensitivity index. Yield Strength (X5) comes second, with more influence on 
the outcome than the pipe dimensions. Pipe wall thickness (X3) depict a moderate effect with total 
sensitivity index of approximately 0.19445. Outside diameter (X1) and flaw length (X2) have the least 
impact on the model outcome with a total sensitivity index of approximately 0.015. It can be observed 
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that the interaction effect corresponds to less than 10% of the total sensitivity index for the top three 
factors.  
 

 
Figure 3. Tornado chart for Mod B31G scenario 1 

Table 5 presents the sensitivity factors for scenarios A, B and C. It should be noted that the flaw 
length has the least impact on the outcome in Scenarios A and C but has the highest sensitivity index 
for scenario B. Scenario B corresponds to a short wall loss indication in the axial direction while 
keeping the same size accuracy as the other two scenarios, which might not be realistic since some 
ILI tools have a threshold for flaw detection an different accuracies depending on the flaw size. 
However, the mentioned effect of the flaw length parameter in Mod B31G illustrates the need to run 
SA on multiple cases representative of the operator assets. That is, the general case shown in Scenario 
1 does not suffice and the sensitivity cases used for the analysis of one system should be reviewed 
before using with another system to make sure they are representative. 
 

Table 5. Sensitivity factors for Mod B31G (scenarios A to C) 
 

  Sensitivity Analysis 

Parameter Variable 
Scenario 

A 
Scenario 

B 
Scenario 

C 

X1 D 0.015 0.007 0.015 

X2 l 0.015 0.724 0.015 

X3 t 0.108 0.05 0.079 

X4 d 0.718 0.093 0.683 

X5 YS 0.216 0.19 0.272 

 
FFS subject matter experts have stressed the importance of flaw depth on the outcome of the burst 
pressure calculation of corroded pipe; flaw depth is indeed the parameter with most influence on the 
burst pressure calculation. However, in some cases, the values and accuracies of the other factors, 
might Hence the importance of performing the SA for each risk model, with cases representative of 
the system and the inspection tools used, and couple the results with the data uncertainty assessment. 
YS consistently comes in the top three influential factors. The original Mod B31G model uses SMYS 
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rather than YS. The SA presented shows that original simplification has impact on the calculated 
burst pressure, and that the calculation would benefit from the use of representative mechanical 
properties rather than minimum specified values. 

 
Sensitivity analysis of an ASME/ANSI B31.8S Compliant risk model 
 
The SA of a risk model was performed. The model considers all threats specified in ASME B31.8S 
section 2 and the Safety, Environmental and Production Loss for Consequence of Failure (CoF). The 
final Likelihood of Failure (LoF) is calculated by simple aggregation of the LoF of individual threats. 
Table 6 shows a summary of the models used for each threat.  
 

Table 6. Basis of the assessed risk model 
 

Threat Model Basis 
External Corrosion Mod B31G 
Internal Corrosion Mod B31G 
Stress Corrosion Cracking Mod Ln Sec for Axial Cracking 
Manufacturing - Defective Pipe 
Seam 

Mod Ln Sec for Axial Cracking 

Manufacturing - Defective Pipe Mod Ln Sec for Axial Cracking 
Defective Girth Weld Simple Limit State Thresholds 
Defective Fabrication Weld Susceptibility Model 
Wrinkle Bend or Buckle Susceptibility Model 
Equipment Failure API 581 

Third Party Damage Impact model by Chen and Nessim coupled with 
probability of failure given a hit model by Fuglem et al. 

Previously Damaged Pipe EPRG Mechanical Damage Fatigue Model 
Incorrect Operational Procedure CEPA IF Self-Assessment Questionnaires  
Weather Related and Outside 
Force 

Geohazard and hydro hazard mapping coupled with 
lateral strain measurements 

 
Table 7 shows the five factors that have the highest effect on the outcome of the risk model. Outside 
diameter stands out as the predominant parameter, exerting a significant impact on both LoF and 
CoF. Yield Strength affects the resistance of the pipe and affects the outcome of the LoF in the 
majority of the individual threat models. Flaw dimensions (corrosion/crack/gouge depth) were 
expected to have a significant impact on LoF; however, they rank behind the dimensions of the pipe 
and the properties of its material in terms of significance.  
 

Table 7. Top 5 influential factors on the risk model 
 

 Rank Symbol Parameter 

1 D Outside Diameter 

2 YS Yield Strength 

3 d Wall loss/Crack Flaw Depth 

4 dg Gouge Depth 

5 MAOP Maximum Allowable Operating Pressure 
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The above results were integrated to develop data quality flags that influenced the calculated risk. 
Those quality flags controlled if the pipe dimensions and mechanical properties had Traceable, 
Verifiable and Complete (TVC) files and if the Maximum Allowable Operating Pressure (MAOP) 
had been reconfirmed. The risk model was modified to adjust the outcome when data pipe 
dimensions or mechanical properties were deemed uncertain. Flaw dimensions were considered in 
the probabilistic LoF analysis that incorporates the measuring tool error and did not require further 
adjustment in the risk model.  
 
 

Conclusions 
 
This comprehensive review and comparative study have underscored the critical role of SA in risk 
assessment for oil and gas pipelines. Through the meticulous examination of various SA techniques, 
ranging from variance-based methods to derivative-based and local approaches, the study has 
highlighted the unique strengths and limitations of each method in the context of pipeline risk 
management. A comparative analysis revealed that while some methods like eFAST' method provide 
a broad and detailed sensitivity spectrum, others, such as the Morris Method, offer a more 
computationally efficient, albeit less accurate and detailed, perspective. This diversity in SA 
techniques underscores the necessity of selecting an approach that aligns with specific project 
requirements, taking into consideration factors such as model complexity, data availability, and 
computational resources. 
 
The practical case of a SA for ASME Mod B31G model for corroded pipe was presented. Scenarios 
with an extended domain corresponding to the inventory installed and selected cases for 
representative corrosion features were reviewed. The factors impacting the outcome of the model are 
dependent on the parametrization. Hence, a comprehensive SA requires the careful definition of 
such scenarios to represent the application domain of the risk model. 
 
A ranking of the factors impacting the outcome of a risk model compliant with ASME/ANSI B38.1S 
were presented: pipe dimensions (outside diameter) and mechanical properties (yield strength) are 
more influential than flaw dimensions (corrosion/crack/gouge depth). The insights provided by the 
SA of the risk model were integrated into the model to compensate for data uncertainty.         
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