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Abstract 
 

he inspection capability of magnetic flux leakage (MFL) is subject to the angle between its 
magnetic field and the anomaly. To get a comprehensive assessment on corrosion anomalies, 

more and more pipelines are inspected with two MFL techniques with perpendicular magnetic 
fields, i.e., axial MFL (MFL-A) and circumferential MFL (MFL-C). Currently, inspection data from 
each MFL tool are analyzed separately, and two inspection reports are generated respectively. In this 
paper, we propose a model which aligns the data from two magnetic field orientations and fuses the 
respective signals a single inspection result to achieve a 3D metal loss depth map with laser-like 
precision. The alignment of the signals is achieved through conversion into the same modality i.e., 
MFL-A converted to MFL-C and vice versa. The fusion model is a neural network trained on 
historical MFL and laser scan data. It takes the aligned MFL-A and MFL-C signal data as the input 
and produces 3D metal loss depth maps with high resolution. In this case study with Enbridge Liquid 
Pipelines, the proposed model is validated on the field data from an operational pipeline. The 
depth comparison of  the derived 3D metal loss depth maps versus 3D laser scans has very 
promising results. The 3D metal loss depth maps are also used for deriving 2D profiles as inputs to 
RSTRENG and P² methodologies. The fusion derived results, compared to the box geometry, allow 
for more accurate estimation of pipeline burst pressure. 
 
 

Introduction 
 
Magnetic flux leakage (MFL) inline inspection tools remain one the most utilized inspection methods 
to detect and size corrosion on a pipeline. The MFL technologies can be run with magnetic field 
aligned axially (MFL-A) or circumferentially (MFL-C) in the pipeline. MFL-A tools are typically used 
for circumferential, pinhole, pitting and general corrosion features whereas the MFL-C focus more 
on the axial oriented corrosion anomalies. These tools are complementary and therefore are often 
run together to provide improved confidence in detection and sizing of a wide range of corrosion 
morphologies on the pipeline. 
 
To gain the most benefit of running the tools concurrently, they may be evaluated together by a 
highly experienced evaluation expert. With deep knowledge of both tools, an evaluator may use the 
signals to infer the best length, width, and depth sizing of the corrosion anomalies. This specialized 
evaluation is extremely labour intensive, and the sizing process is subjective.  
 
Evaluation of MFL technologies, whether individually or together, is always presented as a resulting 
box around the corrosion area. This cuboid box of length, width and depth is a simplified way of 
describing the corrosion anomalies, and although it is a convenient way to receive corrosion details 
in a tabular report, much of the information is lost about the corrosion shape and conservatism is 
inherently introduced around the failure pressure calculations.  
 
ROSEN has previously presented results of direct field analysis (DFA) which showed the benefits of 
moving away from calculation of failure pressures based on clustering of boxed anomalies to 
calculations on the actual metal loss depth maps [1] [2]. The results of DFA are a step change in 
presenting data from the two MFL tools as one combined 3D depth map as opposed to an evaluated 
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box based on expert evaluation. The computation of the 3D shape allows one to directly leverage the 
strength of both MFL tools for accurately evaluating a wide range of morphologies on the pipeline as 
well as a more accurate calculation of failure pressure.  
 
In this paper, ROSEN will show the continuing evolution of combining of signals of the two MFL 
tools into one 3D depth map using a Machine Learning Data Fusion Model. The advantage of this 
methodology is that once the tools have been adequately aligned the pre-trained Convolutional 
Neural Network (CNN) can be applied effectively to all the corrosion anomalies on a pipeline. The 
improvements of computational speed allow the evaluation of every corrosion feature on a pipeline 
with a full high resolution 3D depth map; like that of an in-ditch laser scan. The advantages in 
morphology, depth and failure pressure calculations will be presented here through a case study with 
Enbridge Liquid Pipelines on one of their more challenging tape coated lines.   
 
 

Technology Outline 
 
As described above the combining of two signals is typically manual process. It requires a very 
experienced analyst (or team) with expertise in both MFL-A and MFL-C technologies. They must 
understand the both the strengths and the limitations of each tool to glean the most pertinent 
information from the tools to properly characterize the feature. This analysis at best however will 
only ever result in a cuboid representation of the feature itself. The method of data fusion on MFL-
A and MFL-C outlined in this paper, is the fusion of two input magnet signals into a CNN and 
outputting one depth map. This image-to-image translation negates the need for experts to attempt 
to combine individual MFL signals, and it fully describes the feature not only in depth but also its 
entire 3D morphology.  
 
Fusion Process 
 
The process itself is comprised of several steps outlined in Figure 1 and starts with both MFL-A and 
MFL-C tools being run in a pipeline segment. The tools are run as in any traditional service, and no 
special coordination of the tools is required. The necessity for the tools to be run at the same (or 
nearly same) date is not a strict requirement of the process, however the further apart the inspection 
dates of the two tools the more one should consider the effects of corrosion growth in the results. 
This paper does not specifically address corrosion growth rate and is a topic for future investigation. 
Next is a pre-processing step for each tool individually to remove background magnetization and 
noise in the signal. Then a standard pipeline alignment is performed to ensure each joint of pipeline 
is matched between the two runs. A fine alignment is then done on each individual joint to ensure 
a high alignment of the anomalies from the two tools. The aligned anomalies are then processed by 
the data fusion model producing a highly detailed 3D metal loss depth map.  

664https://doi.org/10.52202/072781-0037



Pipeline Pigging and Integrity Management Conference, Houston, February 2024 
 

 

 
Figure 1. Fusion process 

 
 
Data Pre-Processing  
 
Two pre-processing steps are required on the raw signal data. Step one is magnetic normalization to 
compensate for individual tool effects on background magnetization, and the next step is to remove 
individual artefacts in the signal data. The aim is to have robust quality input data for the data fusion 
model without compromising the signal of the anomalies themselves.  
 
Alignment 
 
The initial pipeline alignment is performed by a standard pipeline process, done routinely within the 
inspection analysis process. It is an important step, however it is a standard process so is not discussed 
further here. Following the general alignment of the features detected by both MFL runs in a pipe is 
a detailed alignment of the signals.  
 
The signal alignment of the two tools is a vital step in the process of data fusion. If the signals are 
not accurately aligned, then fusion of the two signals will be adversely affected. The method used for 
alignment of the two MFL signals was a manual process described in Figure 2. First, 1) using neural 
networks, measured MFL-A signals were converted into MFL-C signals, and measured MFL-C signals 
were converted into MFL-A signals. Then, 2) the newly converted signals were matched to the 
respective measured signals. Finally, 3) a two-channel template matching was used to align the two 
matched signals sets together. To ensure a high quality of matching every matched set was reviewed 
manually and adjusted as needed.  
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Figure 2. Signal alignment procedure 

 
Training of the Data Fusion Model 
 
The data fusion model has a U-Net architecture. U-Nets are fully convolutional neural networks that 
use skip-connections in addition to a simple encoder-decoder structure [3]. The training of the 
network uses a supervised learning method in which paired input data and desired output data are 
used. The training data consisted of laser scans and simulations of those laser scans as shown in 
Figure 3. One training pair consists of the MFL-A and the MFL-C signal stacked on together forming 
the input and one laser scan patch as the desired output. 
 

 
Figure 3. Training data set example – MFL-A and MFL-C signals are simulated from the laser scan 

 
Fine-Tuning Option 
 
If an operator has historical laser scans on a pipeline, it is possible to carry out a fine-tuning of the 
data fusion model. The initial or pre-trained model is trained with original entire training set. A fine-
tuning of the model starts with the pre-trained model and further trains using the just historical laser 
scans. This extra training tailors the model to the corrosion on the specific pipeline of interest.  
  
Validation of the Training  
 
To validate the training of the model, the magnetic responses of MFL-A and MFL-C are simulated 
on additional laser scans (not used in the training) and processed with the data fusion model. A data 
fusion example is given in Figure 4, it shows the high accuracy of image reconstruction.  A pixel-by-
pixel comparison on depth was then carried out between the original laser scan patch and the 
resultant 3D prediction image. A unity plot comparison is shown in Figure 5, in which the mean 
absolute error (MAE) is 0.26% in depth. It’s demonstrated that the model is adequately trained. It 
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does not show the accuracy of the data fusion on real pipeline data, for this a case study was 
conducted. 
 

 
Figure 4. Example of data fusion on simulated data 

 

 
Figure 5. Depth (%) comparison on simulated data 
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Case Study 
 
To demonstrate the effectiveness of the data fusion technique, a real pipeline validation was carried 
out by ROSEN and Enbridge Liquid Pipelines. Enbridge ran two inspections in a tape coated 
segment of pipeline: an MFL-A Ultra (high resolution MFL-A) in 2019 and an MFL-C in 2021. 
Enbridge provided 20 laser scans for depth and failure pressure validation of the data fusion model 
and an additional 19 laser scans were provided for fine tuning of the model. Depth and failure 
pressure validation of the model was carried out for both the pre-trained model and the fine-tuned 
model.  
 
Pre-trained Depth Validation 
 
As outlined above, the pre-trained data fusion model was trained on laser scans and simulations from 
50 different pipeline segments. This model was used to fuse the MFL-A Ultra and MFL-C signals into 
3D metal loss depth maps. Figure 6 shows an example of the data used for the fusion (top left MFL-
A signal, and top right MFL-C signal), the resultant data fusion 3D depth map (bottom left) and the 
corresponding validation laser scan (bottom right). The similarity of the morphology is immediately 
apparent in a visual comparison of the data fusion 3D depth map and the laser scan. Data fusion is 
effective at reproducing all the fine details of the corrosion structure.  
 

 
Figure 6. Example of data fusion on measured data 
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The comparison of the depth was performed by boxing the validation laser scan data with an in-
house boxing routine. These boxes were projected onto the data fusion 3D depth map in the same 
region and the deepest points of each boxed anomaly was compared. Boxing of anomalies on the 20-
validation laser scan provided 5570 individual boxed anomalies for feature validation. A comparison 
of the deepest point in the laser scan anomalies and the data fusion anomalies are given in Figure 7.  
 

 
Figure 7. Depth (%) comparison of pre-trained model 

 
The comparison of the deepest point shows 97.5% of anomalies within the ±10% depth band of the 
unity plot with an associated 4.42% MAE. Qualitatively, the results of the validation show a slight 
under-call in the depth of anomalies under 20%wt and a tendency of slight overcalling of some 
anomalies above about 40%wt.  
 
Investigating these cases, it was observed that many of the laser scan results had areas of data quality 
inconsistencies. This is thought to be due to the stitching together of the images in the software for 
the handheld laser scanners. This may have in part contributed to some of the under-calling of 
anomalies under 20% depth. 
 
Some of the deeper anomalies appear to have a prediction which are slightly narrower than actual 
anomalies which is likely due to training on feature types that are different from the ones seen in this 
segment. It may also be due to relative fewer training anomalies greater than 40%wt. To address this 
issue a fine-tuning of the model was performed to tailor the model to the specific of this segment. 
 
Fine-Tuned Depth Validation 
 
The pre-trained fusion model was fine-tuned using an additional 19 laser scans that were not included 
in the original training. The validation of depth was carried out on the same set of 20 laser scans 
given in Figure 8. 
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Figure 8. Depth (%) comparison of fine-tuned model 

 
The results of the fine-tuning increased the number of anomalies in the ±10% depth band to 98.3% 
with an MAE of 3.32%. The comparison of depth shows a tightening of the distribution around the 
unity line. The previously observed over calls have been reduced, however there are a few minor 
under calls. In general, the results improved with the fine-tuning which demonstrates it is beneficial 
to integrate previous knowledge of the pipeline feature characteristics into the data fusion model.  
 
 
Failure Pressure Validation 
 
In the pipeline industry two failure pressure calculation methods commonly used are Remaining 
Strength (RSTRENG) and increasing Plausible Profiles (P2), both of which rely on 2D river bottom 
profiles in their calculations. MFL technologies traditionally only provide boxed data sets in the 
reports. Therefore, generated river bottom profiles used for RSTRENG and P2 calculations are 
derived from box data by the projection of a path through the box pseudo 3D landscape. Using boxed 
anomalies for river bottom profiles has an inherent conservatism because the boxed anomalies are 
represented by the max depth of the corrosion anomaly. The volume loss of feature or cluster is 
overestimated and results in a conservative failure pressure calculation [4].   
 
To demonstrate rigorously the conservatism of the boxed data sets vs the detailed 3D depth maps the 
validation laser scans were sectioned into 180 patches of corrosion and boxed. RSTRENG and P2 
were calculated on each of these patches, for 2D profiles derived from the boxed data sets and the 
actual laser scans. The result of the comparison is given in Figure 9. 
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Figure 9. RSTRENG and P2 for box data vs laser scans 

 
It is evident that for anomalies with a lower failure pressure there is a conservatism that results from 
boxing the data. This is consistent for both RSTRENG and P2 calculations. Therefore, it is expected 
that 3D depth maps derived from the fusion will also eliminate this element of conservatism and 
would yield more accurate results. The results of both RSTRENG and P2 calculation of the data 
fusion versus the laser scan are given in Figure 10. 
 
 

 
Figure 10. RSTRENG and P2 for 3D depth maps vs laser scans 

 
Figure 10 shows 2 important results. First, failure pressure calculations of the fusion results correlate 
strongly to the failure pressure calculations of the lasers scan in both RSTRENG and P2. Second, 
MFL technologies can provide an accurate 3D metal loss depth map using data fusion which can 
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eliminate the conservatism traditionally inherent in the failure pressure calculations of MFL 
technologies. 
 
It should be noted that there was no noticeable difference between the failure pressure results of the 
pre-trained model and fine-tuned model and as such only the pre-trained results are presented here.  
 
 

Conclusions  
 

It has been shown that the data fusion technology can accurately predict the corrosion 
depth maps using MFL-A and MFL-C technologies together. 
The depth profiling from data fusion shows accurate morphologies of the corrosion 
anomalies as well as a strong correlation in the max depth of the anomalies. 
The ability to eliminate the principal conservatism in failure pressure calculations by 
eliminating the need to box anomalies allows for much more accurate failure pressure 
calculations with MFL. 
The fine-tuning with laser scans can slightly improve maximum depth 
values but has lower influence on pressure predictions.  

 
 
Future Development 
 
Future work in the data fusion technology includes: 
 

Data pre-processing: Further techniques in data refinement to eliminate background noise 
and improve data quality can further increase the quality of the data fusion depth maps. 
Alignment: More robust automatic alignment of MFL-A and MFL-C  
Augmentation of training data:  Continuous augmentation of training data particularly in 
areas with deep anomalies. 
Validate Data fusion model on additional line segments of varying diameter and wall 
thickness. 

 
 

Abbreviations 
 
CNN                 Convolutional Neural Network 
DFA  Deep Field Analysis 
MAE  Mean Absolute Error 
MFL  Magnetic Flux Leakage 
MFL-A  Axially orientated magnetic flux leakage technology 
MFL-C  Circumferentially orientated magnetic flux leakage technology 
P2  Plausible Profiles 
RSTRENG        Remaining Strength 
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