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Abstract 
 

ipeline operators in the United States are increasingly relying upon materials verification 
programs (MVP) to establish the properties of pipelines lacking reliable records. The ongoing 

MVP at the Pacific Gas and Electric Company (PG&E) applies external nondestructive testing (NDT) 
to exposed line pipe to gain insight into the grade, vintage, and manufacturing method of the pipe. 
PG&E supplements the standard NDT methods for composition, strength, and geometry with the 
nondestructive collection of surface microstructures using metallographic replicas. The 
microstructures are quantitatively evaluated to determine the ferrite grain size and fraction of pearlite 
(dark constituent). These are then used in conjunction with other measured characteristics to support 
determination of grade and vintage, and to identify populations of similar pipes. Automating the 
quantitative evaluations is of interest because the manual evaluations are labor intensive and subject 
to variability associated with evaluator skill, judgement, and fatigue. 
 
Traditional methods for automating image analyses are often challenged by small variations in sample 
or image quality that are ubiquitous in metallographic microstructure images. Machine learning (ML) 
models have been shown to be more robust, but training these models typically requires hundreds or 
thousands of manually pre-processed images. This creates a high initial investment that impedes 
practical implementation in an operational environment. Recently, pre-training ML models with a 
large number of generic images has been shown to substantially reduce the required number of 
application-specific training images. This work will describe the performance of an open-source ML 
model pre-trained on a database of over 105 microscopy images and subsequently ‘finetuned’ on 17 
line pipe microstructures. The training and validation of the model will be described, and criteria for 
automated screening of discrepant results will be proposed and validated. Results from automated 
evaluations will be compared to corresponding manual evaluations from more than 170 
microstructures from more than 50 line pipes. The automated results will be shown to be generally 
equivalent to the manual results, and a few outlier results will be examined in more detail to illustrate 
opportunities to improve performance in a next-generation version of the model. 
 
 
Background and motivation 
 
As part of their materials verification program, The Pacific Gas and Electric Company (PG&E) may 
collect metallographic images of the microstructures in line pipe steels using both field microscopy 
and nondestructive surface replicas. Since the observed microstructures result from complex 
interactions between chemistry and thermomechanical processing route, they can provide a 
‘fingerprint’ that corresponds to properties within a known range and can be often used to draw an 
equivalency (or exclude one) between groups of pipes. Efforts to date have demonstrated that routine 
analysis of microstructure can contribute valuable insights during materials verification and MAOP 
reconfirmation [1], including: 

Verifying reliability of reported installation date and pipe grade from existing records [2,3] 

Determining the equivalency of features with and without reliable records 

Establishing the manufacturing process 

Verifying proper surface preparation for chemical and strength analysis 

Interpreting the validity of NDT for yield strength (YS) and assessing the possible mismatch 
with YS from destructive testing [4] 

P 

407 https://doi.org/10.52202/072781-0023



Pipeline Pigging and Integrity Management Conference, Houston, February 2024 
 

In addition, quantitative characterization of the microstructure can allow for estimation of physical 
properties via correlations developed using a database of pipes with known properties and quantified 
microstructures [5,6]. To accomplish this, PG&E currently performs quantitative analyses of line pipe 
microstructures using standard manual methodologies. The methodologies include comparison and 
counting methods for both ferrite grain size (GS) and percentage of dark constituent (%DC) [7]. 
Ideally, a typical analysis process for a single microstructure (i.e., one test location) takes the average 
result from multiple (3 or more) evaluators applying one or two methods on multiple (5) images. 
Multiple images are needed to ensure representative sampling of the microstructure, multiple 
evaluators to avoid observation bias and process drift, and multiple methods to enable real-time self-
checking of results (the methods should agree if performed properly). When combined with subject 
matter expert (SME) oversight and annual retraining, this approach results in reliable and 
reproducible results; however, experience has revealed that the manual evaluations can become overly 
resource intensive as the volume of images to be analyzed increases. In addition, without SME 
oversight the results are subject to a risk of inconsistent measurements and/or process drift. As a 
result, automation of the process is of interest as a means to decrease resource demand and improve 
process stability. 
 
In theory, the image processing tools required to automate measurement of GS and %DC are 
relatively straightforward: counting particles (grains) and dark pixels. In practice, implementation is 
challenged by several aspects of the specific microstructures and the quality of the images, Figure 1. 
Grain boundaries vary widely in appearance (thickness, color, density) and often have gaps that a 
human can interpolate but that create challenges for automated differentiation of discrete grains. In 
addition, the appearance of dark constituent (DC) ranges from dark and quasi-uniform to mottled 
with colorful bright regions, creating challenges with respect to reproducibly defining which pixels to 
count as DC. It can also be unclear how to differentiate between grain boundaries and DC since they 
both appear dark in the images. Finally, the surface replicas often have artifacts that aren’t present in 
traditional metallographic samples/images, 
such as bubbles that appear as bright spots. 
These issues create challenges for 
traditional image processing because it 
relies on ‘thresholding’, the process of 
assigning a brightness or color level to 
differentiate one phase from another. 
Resolving these challenges generally 
requires human intervention, and it is often 
faster to manually analyze the 
microstructure (especially by comparison 
methods) than to optimize the image for 
automated processing. 
 
Recently, a machine learning (ML) method 
has been proposed to process (segment) the 
images to enable subsequent automated 
analysis by these standard image processing 
tools [8]. The method, which is 
implemented in Python, uses a 
convolutional neural network (CNN) that 
has been pre-trained on a database of over 
105 microscopy images to minimize the 

 
Figure 1. Example of several quality issues typical 
of microstructure images collected by 
nondestructive surface replication: (a) different 
grain boundary appearances, (b) gaps in grain 
boundaries, (c) different DC appearance, and 
(d) replication bubbles. 
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number of training images required to finetune the model for line pipe microstructures. The outputs 
of the ML model are segmented images in which the features of interest are identified by a unique 
color, one for DC and one for ferrite grains. Analysis of the segmented images to determine the 
ferrite grain size and %DC is then effectively automated using standard image processing tools such 
as ImageJ. The combined steps of pre-processing the images, segmenting them using the ML model, 
analyzing them in ImageJ, and compiling and quality checking (QC’ing) the results in MS Excel are 
referred to below as the ‘automated’ method.  
 
 

Experimental methods  
 
Collection of microstructure images 
 
Microstructure images were collected from nondestructive replicas taken from pipe surfaces. 
Replication nondestructively records the topography of a metallographic specimen (the pipe surface) 
for subsequent laboratory examination by creating a negative relief of the prepared surface with a 
plastic film [7]. It is especially valuable when field conditions preclude direct imaging of the pipe 
surface, for example when the pipe is vibrating or has a small diameter. Microstructural images taken 
from replicas were used in this investigation because they are consistent with field (in-ditch) results 
accessible by nondestructive methods. Preparation of the pipe surfaces for replication is the same as 
for standard field metallography [9,10]. The pipe surface is first cleaned, the top surface is then 
removed (buffed) to a depth of 0.010 in. to mitigate the potential effects of near-surface 
decarburization, the surface is then polished with diamond paste to a finish of 1 m. After polishing, 
the surface is etched with 5% nital to expose the microstructure.  
 
Once the pipe surface is properly prepared and the microstructure has been exposed by etching, a 
cellulose acetate tape is wetted with acetone and pressed onto the etched surface where it is allowed 
to harden (typically within a few minutes). Subsequently, the back of the acetate tape is painted with 
a permanent black marker to enhance imaging contrast, and the tape replica is removed from the 
pipe surface and mounted on a glass slide for transportation and imaging in a standard laboratory 
metallograph. Images are typically collected at magnifications of 200x and 500x, and scaling is 
indicated by calibrated scalebars incorporated into the images.  
 
Manual evaluation of microstructures 
 
The automated microstructure evaluations were validated, in part, by comparison to extensive 
manual evaluations performed as part of the MVP development and implementation at PG&E. The 
manual evaluations assessed %DC and ferrite grain size using both counting and comparison 
methods adapted from ASTM standards [5,7]. Manual grain size evaluations used the methods 
described in the ASTM E112, Section 10 (comparison procedure) and Section 11 (counting method) 
[11]. %DC evaluations used the counting method from ASTM E562 and a comparison method 
developed internally by PG&E and RSI based on the ASTM E112 grain size comparison method 
[5,12].  
 
Automated evaluation of microstructures 
 
The automated microstructure analysis is enabled by the use of a ML model to segment the 
microstructure images for subsequent analysis using standard image processing tools. The ML model 
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applies a supervised deep learning approach implemented through a CNN using an encoder-decoder 
architecture. The model architecture is UnetPlusPlus and the encoder is se_resnext50_32x4d. These 
details are described further in [8] and example code is available at [13]. The primary novelty of the 
approach is that the model was pre-trained on a database of over 105 microscopy images, called 
MicroNet, which mitigates the need for an extensive set of manually segmented application-specific 
images for final training (i.e., ‘finetuning’). Instead, the pre-trained model was optimized for 
evaluation of line pipe microstructures by finetuning with 17 manually segmented line pipe 
microstructures. The benefit of pre-training is significant since preparation of manually segmented 
training images requires 2 to 4 hours per image, and because the number of available images is often 
limited from a practical perspective. For example, PG&E has collected approximately 600 
microstructure images in the last two years of its MVP.   
 
The training images used for finetuning the model consisted of microstructures collected from 
surface replicas of line pipe steels, except for one transverse cross-section that was included to provide 
an example of a very coarse hot-rolled microstructure, Sample 15 in Table 1. The training images 
were selected to provide a representative range of image qualities, ranging from high contrast with 
few replication artifacts to low contrast with poor grain boundary resolution and numerous artifacts, 
Figure 2. This was to ensure that the training set would be representative of images from actual in-
ditch inspections, both in content and quality. The pipes from which the microstructures were 
collected had manufacturing dates from 1947 to 2017 and Grades from B to X52 (with six unknown), 
Table 1. The long term training strategy was to initially focus on regular, more easily recognized hot-
rolled microstructures, and to implement lessons-learned in a future update to include the more 
complex microstructures generated by quenching and other non-equilibrium processes. Thus, the 
microstructure types used for the training images in this work were mostly hot-rolled or normalized 

Table 1. Characteristics of the 17 pipes used for training. 

Sample Year Seam Grade 
OD, 
in. 

Wall, 
in. 

1 1947 SMLS Grade B 16.000 0.313 
2 1947 SMLS Grade B 16.000 0.313 
3 1947 SMLS Grade B 8.625 0.277 
4 1949 SMLS Grade B 16.000 0.312 
5 1961 SMLS X46 12.750 0.500 
6 1961 SMLS X46 12.750 0.500 
7 1966 SMLS Unknown 16.000 0.368 
8 1966 SMLS Unknown 8.625 0.522 
9 1981 ERW Unknown 8.625 0.188 

10 1986 SMLS Grade B 8.625 0.322 
11 1987 SMLS Unknown 4.500 0.237 
12 1991 SMLS Unknown 8.625 0.322 
13 1991 SMLS Unknown 8.625 0.322 
14 2007 SMLS Grade B 16.000 0.313 
15 2014 SMLS Grade B 4.500 0.337 
16 2014 SAWL X52 36.000 0.500 
17 2017 ERW X52 24.000 0.500 
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(e.g., Figure 1 and Figure 2b), with two examples of TMCP (e.g., Figure 2a), and no examples of 
quench and tempered. The ferrite grain size and %DC determined by manual methods ranged from 
12.0 to 7.7 G (MLI of 4.9 to 22.2 m)1 and 2.3% to 47.5%, respectively. These values are tabulated 
in Table 2, along with the weight % of C, Mn, Si and S.  
 

The training images were 512×512 
pixel (px) slices taken from larger 
raw images, which were typically 
1600×1200 px or 2588×1960 px. 
In some cases, the original images 
were rescaled prior to slicing in 
order to ensure a representative set 
of features in the 512×512 px slice. 
For training, each image was 
accompanied by a manually 
segmented copy to provide 
‘ground truth’ for the model. The 
manual segmentation was 
performed in an open source 
image processing software (GIMP 
2.10.34) by coloring the ferrite 
grains red (255,0,0)2, the DC blue 
(0,0,255), and leaving the grain 
boundaries uncolored. The 
subsequent DC analysis 
determines the %DC directly from 
the segmented area of the DC; 
therefore, accurate outlining of the 
DC colonies during manual 
segmentation was important. 

 
1 Mean linear intercept (MLI, m) = 320·2(-G/2). 
2 Red, Green, Blue (RGB) pixel values which range from 0 to 255 are indicated by (R, G, B). 

 
Figure 2. Examples of (a) high- and (b) low-quality images from the training 
set (samples 17 and 12, respectively). 

Table 2. Composition, %DC, and grain size (G) of the 17 
pipes used for training images. 

Sample 
C, 
% 

Mn, 
% 

Si, 
% 

S, 
% 

%DC G 

1 0.220 0.420 <0.001 0.022 20.3 8.7 
2 0.180 1.040 0.220 0.009 8.2 10.2 
3 0.250 0.810 <0.001 0.024 37.0 9.9 
4 0.130 0.425 0.255 0.027 9.9 8.5 
5 0.235 0.705 <0.001 0.0185 26.1 8.8 
6 0.280 1.405 <0.001 0.0285 47.5 9.4 
7 0.230 0.530 0.050 0.023 25.0 9.0 
8 0.025 0.770 0.020 0.026 28.8 9.0 
9 0.154 0.620 0.116 0.028 3.2 12.0 

10 0.220 0.840 0.380 0.015 34.0 9.4 
11 0.183 0.430 0.068 0.016 17.3 10.7 
12 0.170 0.440 0.210 0.015 10.3 7.7 
13 0.270 0.870 0.240 0.004 40.0 9.7 
14 0.200 0.950 0.210 0.006 15.0 10.4 
15 0.200 0.845 0.195 0.002 30.2 9.2 
16 0.140 1.040 0.330 0.001 23.3 10.5 
17 0.070 1.140 0.190 0.002 2.3 12.0 
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However, the subsequent 
grain size analysis relies on 
grain counting, not direct 
measurement of grain 
areas, because it is designed 
to duplicate the counting 
method outlined in ASTM 
E112. Thus, accurately 
outlining the (ferrite) grains 
was not critical as long as 
the grains could be 
counted. This was 
important for the manual 
segmentation because it 
mitigated the challenges 
associated with accurately 

tracing the width of the grain boundaries, which varies significantly across the various 
microstructures. Finally, the set of images was divided into training and validation groups of 12 and 
6 images3, respectively. 
 
Finetuning the model was performed in Python as an iterative process that monitors changes in 
performance from one iteration (epoch) to the next. In this case, the performance of the model is 
related to a parameter that quantifies the difference between the manually and ML segmented images 
on a pixel-by-pixel basis. The training used a learning rate of 10-5, which controls how fast the ML 
model parameters change with each epoch (a learning rate that is too low will take too long to train 
while a high learning rate will fail to converge). Early stopping with a patience of 15 was used, 
meaning that if model performance fails to improve for 15 consecutive iterations the training will 
stop and the optimized model will be saved. Early stopping prevents ‘overfitting’ where the model 
performs well on the training dataset, but poorly on the validation dataset. 
 
The steps for practical implementation of the optimized automated model are shown schematically 
in Figure 3. Raw images are pre-processed in ImageJ, the image scaling (px/ m) is measured manually, 
the finetuned ML model is run to generate the segmented images, the segmented images are analyzed 
in ImageJ, and the results are compiled and evaluated in MS Excel. Figure 4 shows an example of the 
pre-processing steps. The raw image shown at left is scaled to 1100 px high and standard image 
processing tools are used to sharpen the image, enhance the contrast, and level the background to 
create the ‘scaled’ image shown at the center. Finally, the 1024×1024 px ‘slice’ shown at right is 

 
3 One image from the training set was reused in the validation set after rotating 180°. 

 
Figure 3. Process flow of the automated process for evaluating 
microstructures. 

 
Figure 4. Example of the image pre-processing: (a) raw image, (b) same image after scaling, 
enhancing the contrast, and levelling the background, (c) 1024x1024 px slice used for analysis. 
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copied from the scaled image and saved for evaluation. These actions can be performed on batches 
of images by use of a suitable macro script. Manual measurement of the image scaling is easily 
performed in any image manipulation software by measuring the length (in pixels) of the scalebar in 
the scaled image, and it only needs to be performed on one image for each combination of 
magnification and image size. 
 
The ML model is called in Python and outputs two segmented images for each 1024×1024 px input 
image. The segmented images highlight in yellow the colonies of dark constituent (DC) or the ferrite 
grains, respectively. Example segmented images corresponding to the preprocessed image from Figure 
4 are shown in Figure 5. These images are analyzed in ImageJ to determine the %DC and the number 
of ferrite grains. Analysis of the DC segmented image comprises summing the area (in px2) of the 
yellow-highlighted DC relative to the total number of pixels in the image (10242). That analysis 
considers only fields of 100 px2 or larger in order to minimize errors associated with small particulates 
and image artifacts. The grain size segmented images are analyzed by counting the number of yellow-
highlighted ferrite grains twice, once including and once excluding the grains that intersect the edges 
of the image. Those values are subsequently used, along with the image scaling, %DC, and image 
size, to determine the average grain size. The minimum particle (grain) size to be counted is again 
limited to mitigate overcounting due to noise in the image. In this case, the limit is based on an initial 
count performed with the limit set to 60 px2. If that initial count exceeds 1000 grains, then the grains 
are small enough that the 60 px2 threshold is likely to exclude a non-negligible portion of the actual 
grain size distribution. In that case, the minimum is decreased to 10 px2 and the count is repeated. 
Both the %DC and grain counting pixel-limits were set by trial and error. These processes are easily 
implemented on a batch basis in ImageJ by calling the ‘Analyze Particles’ command from a macro 
script. That command is a pre-packaged macro that scans a binary image until it finds the edge of an 
object, outlines the object using the wand tool, measures it using the Measure command, fills it to 
make it invisible, then resumes scanning until it reaches the end of the image. The raw results and/or 
summary statistics can be tabulated and exported to a .csv file. 
 
In practice, the numerical results from the image analyses are captured in a .csv file that tabulates the 
filename, the grain count including and excluding the edge grains (‘total grains’ and ‘center grains’, 
respectively), the percent of the image occupied by DC (%DC), the mean and standard deviation of 
the grain size in px2, and the mean and standard deviation of the grain size excluding the largest 

 
Figure 5. Segmented images generated by the ML model for the 
1024x1024 px slice shown in Figure 4. The images highlight in yellow the 
(a) DC and (b) ferrite grains. 
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grain. The grain counts and the %DC are used to quantitatively determine the average grain size per 
ASTM 112 as follows: 

1. Calculate the overall number of grains: 

N = # center grains  #    #     [1] 

2. Calculate the area of ferrite by correcting the total image area for %DC and scaling:  

A(mm2) = 1 % 1024 px 0.001mm/ m S   [2] 

where S is the image scaling in units of m/px as manually determined from the 
scale bar.  

3. Calculate the number of grains per mm2 from N and A: 

NA(grains/mm2) = 
       [3] 

4. Calculate the grain size G from NA per ASTM E112:4 

G = -2.9542+3.3219·log10(NA)      [4] 

The mean and standard deviation of the grain size, with and without the largest grain, reported in 
units of px2 are not used in the grain size determination because the segmentation of the ferrite grains 
is not intended to be accurate from an areal perspective. As described above, the reported grain size 
is determined from the grain count; however, the grain areas in the segmented images are collected 
and used in the automated data screening described below. For both analyses, %DC area and grain 
counting, the results are also visually captured in the form of color masks with the original 
microstructure overlayed at approximately 40% transparency. These ‘QC overlay’ images provide a 
quick and convenient tool for visual qualitative verification of the results. Example overlays from 
analysis of the segmented images from Figure 5 are shown in Figure 6 for (a) DC and (b) grain size. 
 
 

 
4 Note that grain size G is a log scale, with smaller values corresponding to larger grains and vice versa. From 
footnote 1, G values of 5, 10, and 15 correspond to MLI values of 57, 10, and 1.8 m, respectively. 

 
Figure 6. Original microstructures overlayed at 40% transparency on top 
of color masks showing the analyses of (a) DC, and (b) grain size for the 
segmented images from Figure 5. 
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Results 
 
The automated evaluation consists of two primary components: i) automated segmentation by the 
ML model, and ii) automated analysis of the segmented images using traditional image processing 
tools and the calculations described by Eqs. 1 through 4. As a first step towards validation of the 
combined process, results from ML segmentation of the training and validation images were 
compared against results from manual segmentation of the same images. After finetuning, the process 
described in Figure 3 was used to generate segmented images from the raw microstructures used in 
the training and validation sets, as well as duplicate images rotated 180°. The grain size and %DC 
were then evaluated by the automated processes described above. For comparison, the same 
evaluations were applied to the manually segmented training and validation images. An example 
image-set is provided in Figure 7, which shows (a) a raw microstructure image from the validation set 
(sample 11), (b) the corresponding manually segmented image, and (c,d) the results from ML 
segmentation of the raw microstructure. The latter images highlight in yellow (c) the dark constituent 
(DC) and (d) the ferrite grains. 
  
The quantitative evaluations of %DC from the manual and ML segmented images are compared in 
Figure 8a. The unity line is indicated in grey and the estimated repeatability of the manual 
measurement (±20% (relative) for %DC >5%, and 1% (absolute) for %DC 5%) is shown in red for 
reference. The results fall along the unity line and well within the repeatability of the equivalent 

 
Figure 7. Example images from the ML model training set: (a) raw 
microstructure, (b) manually segmented microstructure, (c) ML segmented 
for DC analysis, and (d) ML segmented for grain size analysis. 
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manual measurements. The linear least squared regression (LLSR) has slope and intercept values of 
1.013 and 0.109, respectively, and an R2 of 0.988. These values confirm the visual interpretation that 
there is a strong linear correlation between the manual and ML results, with minimal scatter (R2 close 
to1.0) and negligible systematic error (slope close to 1.0 and intercept close to 0.0). Note that a strong 
correlation between these results is expected because the ML model was trained using these images. 
A more direct evaluation of the ML results will be provided below by comparison to quantitative 
evaluations performed manually. However, the results from these training images are presented here 
to demonstrate that the ML model accurately reproduces the manual segmentation and, at least 
under ideal conditions, the automated evaluation process generates consistent results regardless of 
the source (ML vs. manual) of the segmentation images. 
 
Figure 8b shows the corresponding results for grain size, where the unity line is again indicated in 
grey and ±1 G is indicated in red. The latter is again provided for reference since it corresponds to 
the repeatability associated with the manual grain size measurements discussed below [5]. The results 
suggest good agreement between the analyses, with most of the results falling along the unity line. 
One notable exception, sample 12 from Table 1, corresponds to an image for which the automated 
segmentation was inaccurate due to indistinct grain boundaries. The effect of the indistinct grain 
boundaries, which can occur due to under-etching and/or poor replication quality, is that the raw 
image lacks sufficient information for the model to resolve clusters of grains as distinct from each 
other. Consequently, the ML-segmented image combines multiple smaller grains into a single, large 
field that is subsequently counted as a single grain.  From consideration of Eqs. 3 and 4, this 
undercounting of the grains leads to over-estimation of the grain size which manifests as a lower value 
of G. This is apparent in Figure 8b, where the grain size for sample 12 is reported to be 9.3 versus 
8.1 to 8.5 for the manual and ML segmentation, respectively. Note that the two symbols circled in 
Figure 8b correspond the original (0°) and rotated (180°) orientations for the image from sample 12. 
Including the results from sample 12, the overall LLSR has slope and intercept values of 0.911 and 
1.085, respectively, and R2 of 0.971. This again confirms the visual interpretation that the correlation 
has low scatter and low systematic error. Combined, the results from Figure 8 suggest that, provided 
sufficient image quality, the ML segmentation accurately reproduces the manual segmentation, and 
the results from the subsequent analyses are consistent. 
 

 
Figure 8. Results of (a) %DC, and (b) grain size from analysis of the training slices by 
manual versus automated segmentation (512x512 px). 
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The QC overlays from the DC and grain size analyses of the ML-segmented images from sample 12 
are shown in Figure 9a and Figure 9b, respectively. In the DC overlay, each distinct colony of DC 
has been assigned a different color, and the resultant colormap has been overlayed with the original 
microstructure. Visual inspection of the overlay image suggests accurate alignment between the DC 
in the original image and the colormap obtained from the segmented image. Similarly, in the grain 
size overlay each individual grain counted during the analysis has been assigned a different color. A 
cursory inspection of that image reveals several clusters of grains that have been assigned a single 
color, which means that the ML model was unable to resolve them as individual grains. This effect, 
discussed above with respect to Figure 8b, is most apparent as the central purple feature in the image, 
which covers at least 10 individual grains. This visual inspection constitutes an easy QC for the 
analysis. While visual QC of the overlay images will identify most issues associated with inaccurate 
results, it may not be practical to routinely rely on visual QC (i.e., human intervention) if a large 
number of images are to be processed. Therefore, criteria for automated identification of the most 
common sources of inaccurate grain size results have been developed. 
 
During development of the evaluation process, it was observed that most cases of under-counting the 
number of grains (i.e., multiple grains being counted as a single large grain) resulted from indistinct 
grain boundaries and/or out-of-focus regions in the image. As discussed previously, the net effect of 
under-counting is to artificially attribute a relatively large area to one, or a very few, anomalously large 
grain(s) in the microstructure. Therefore, quantitative criteria based on maximum grain size have 
been implemented to automatically screen for results that should be rejected due to undercounting 
of the ferrite grains. The criteria evaluate the maximum grain size by determining whether either of 
the following conditions are met:  

1. The largest ferrite grain is more than 10% of the non-DC area (i.e., more than 10% of the 
total area of the ferrite). 

2. Excluding the largest ferrite grain changes the standard deviation of the grain size by more 
than 30%. 

These criteria are evaluated from the mean and standard deviation of the grain size, with and without 
the largest grain, in units of px2. Those parameters are, in turn, calculated from pixel-based 
measurements of the individual grain sizes that are tabulated as an intermediate part of the analysis 
in ImageJ. As stated above, the pixel-based grain sizes are used solely as screening criteria and are not 

 
Figure 9. QC overlay images showing the original microstructure for the 
errant sample 12 feature highlighted in Figure 8 overlayed upon the color-
mapped images: (a) DC, and (b) ferrite grains. 
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used for the actual grain size 
determination, which is based on 
grain count to maintain 
consistency with ASTM E112. 
Also, even if the segmentation and 
analysis properly delineate and 
count the ferrite grains, if any 
single grain represents more than 
10% of the total area of the ferrite 
then it is unlikely that there are 
enough grains in the image to yield 
a representative grain size analysis. 
In that case, the image should not 

have been evaluated and the data should be rejected. No quantitative criteria have been developed 
for %DC yet, so %DC is assumed to follow grain size (i.e., if the grain size criteria identify a rejection, 
the data are rejected for both grain size and %DC).  
 
The automated screening criteria were validated by comparison to visual QC of automated analyses 
from 397 line pipe replica microstructure images. For the automated analyses, the quantitative 
screening criteria were automatically evaluated during the final grain size calculations. For 
comparison, the visual QC was performed by briefly reviewing the grain size overlay images from each 
evaluation and manually assigning a ‘reject’ to any image with obvious discrepancies between the 
overlay and the original microstructure. The visual QC was performed by one of the authors ‘blind’, 
without any prior knowledge of the automated screening result. The results are illustrated 
schematically in Figure 10, which indicates that the visual QC accepted 353 evaluations and rejected 
44. Within the 353 automated evaluations that were accepted by visual QC, the automated screening 
accepted 337 and rejected 15. Similarly, within the 44 analyses that were rejected by the visual QC, 
the automated screening rejected 42 and accepted 2. In both cases the miss rate (visual reject / auto 
accept or visual accept / auto reject) is less than 5%. Therefore, the automated screening described 
above accurately reproduces the visual QC more than 95% of the time. In addition, a review of the 
QC overlays for cases where the visual QC and automated screening criteria disagree provided some 
evidence that the automated process may be more reproducible (i.e., reliable) than the visual QC.  
 
PG&E has selectively implemented a standardized process for manually performing quantitative 
microstructure evaluations as part of their MVP. During the development of that process, repeated 
manual evaluations were performed on a set of 42 line pipe microstructures with the goal of assessing 
evaluator-to-evaluator variation, measurement reproducibility, and process stability. As a result, those 
42 microstructures have received an average of more than 10 evaluations per image and can be 
considered ‘well-characterized’. Figure 11 compares the average manual results to the automated 
evaluations from those images. The unity line is shown in grey, and the repeatability limits for the 
manual evaluations are shown by the red lines. The automated evaluations of %DC generally provide 
accurate results when %DC is above approximately 10%, with most of the automated results falling 
within the repeatability limits of the manual measurements. For %DC below approximately 10%, 
the automated evaluations tend to over-predict relative to the manual measurements. This effect will 
be discussed in more detail below, as will the results from the outlier OL-1. For the grain size analysis 
shown in Figure 11b, the automated and manual evaluations are in good agreement. The screening 
criteria described above accepted all of the automated results, which are all within the repeatability 
limits of the manual evaluations. The LLSR analysis confirms a strong correlation (slope near 1.0 

 
Figure 10. Comparison of Visual QC and Automated 
Screening from automated evaluations of 397 replica 
images. The Automated Screening agrees with the Visual 
QC for at least 95% of the images. 
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and intercept near 0.0) with low scatter (R2 close to 1.0). These results suggest that the automated 
grain size measurements provide accurate results compared to the average of multiple grain size 
evaluations performed manually per ASTM E112.  
 
Manual evaluations were also available for 171 of the 397 replica images used to develop the 
screening criteria described above. In these cases, however, the manual evaluations were performed 
as part of MVP data collection and not as part of the process development. As a result, practical 
resource constraints limited the number of evaluations to an average of fewer than 5 per image. 
Figure 12a compares the %DC results from the average of those manual evaluations to the automated 
results. The results rejected by the maximum grain size screening criteria described above, indicated 
by the red symbols, are distributed across the range of measurements with most of them falling within 

 
Figure 11. Manual versus automated evaluations of (a) %DC, and (b) grain size (G) for a 
set of 42 ‘well-characterized’ pipe microstructures. These microstructures received an 
average of more than 10 manual evaluations per image. No results were rejected by the 
automated screening criteria. 

 
Figure 12. Manual versus automated evaluations of (a) %DC, and (b) grain size (G) for a 
set of 171 pipe microstructures. These microstructures received an average of fewer than 5 
manual evaluations per image. Results rejected by the automated screening criteria are 
shown in red. 
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the repeatability limits. This suggests that the grain size based screening criteria do not correlate well 
with the quality of the %DC result, and the strategy to reject %DC evaluations based on the 
corresponding grain size evaluation is likely to predominately exclude valid %DC results. Therefore, 
improved screening criteria for %DC will be evaluated during a future v2.0 development. The 
remaining (accepted) automated evaluations in Figure 12a are clustered around the unity line over 
most of the range. For %DC values between approximately 10% and 35%, the automated results 
tend to fall within the repeatability limits of the manual evaluations; however, when the %DC is less 
than approximately 10% the automated measurements tend to over-predict relative to the manual 
results. This is consistent with the behavior reported in Figure 11a, and it is a known behavior of the 
ML model that occurs in fine-grained, low-%DC microstructures when clusters of fine grains are 
interpreted as colonies of DC. The behavior will be addressed in a future v2.0 development by 
expanding the set of training images to include additional relevant fine-grained microstructure 
images. In addition, there is a tendency for the automated results to under-predict the %DC for 
values above 35%. These behaviors will be discussed below using the outliers indicated as OL-2 and 
OL-3 as examples. An LLSR analysis of the ‘accepted’ results yields slope and intercept values of 
1.244 and -5.014, respectively, and an R2 of 0.823. The deviation of the slope from 1.0, and the offset 
of the intercept from 0.0, reveal the impact of the over- and under-prediction at low and high 
percentages, respectively, while the R2 value quantifies the amount of scatter in the results. The 
decreased R2 relative to Figure 11a may indicate some additional variability in the manual 
measurements as a result of the smaller number of evaluations per image.  
 
Figure 12b compares the corresponding grain size results from the same set of 171 images. The unity 
line is again shown in grey, the repeatability limits for the manual measurements are indicated by the 
red lines, and the results rejected by the automated screening criteria are indicated by the red symbols. 
The data show that the automated evaluations generally estimate grain size within the repeatability 
limits of the manual evaluations, that most of the values identified as ‘rejected’ fall outside that range, 
and conversely that most of the values falling outside that range are identified as ‘rejected’. This 
suggests that the screening criteria appear to be effective for the grain size evaluations. In general, the 
automated results tend to slightly over-predict the grain size (smaller G, larger MLI) compared to the 
manual evaluations. This is likely to result from limited under-counting due to localized areas of 
indistinct grain boundaries in the images. The effect is more pronounced at larger grain sizes, where 
there are fewer grains in the images, so a few ‘missed’ grain boundaries have a larger effect on the 
average grain size. The scatter is fairly significant, with R2 of 0.87, which probably reflects the range 
of image qualities in the dataset, but may also indicate some additional variability in the manual 
measurements as a result of the smaller number of evaluations per image. The outliers designated 
OL-1 through OL-5 were further evaluated by consideration of the corresponding QC overlay images. 
 
Figure 13 shows several images from the outlier designated OL-1 in Figure 11a. For that outlier, the 
automated evaluation significantly over-predicted the %DC relative to the manual evaluation (21.1% 
vs. 8.3%). Figure 13 includes the microstructure image input to the ML model for analysis (a) and 
the QC overlay image output from the DC analysis (c). Also shown are magnified views of the regions 
indicated by the yellow squares in the two images (b, d). Figure 13a and Figure 13b show the 
microstructure image to have relatively high contrast, with a predominance of clearly defined light-
grey ferrite grains and several dark, uniform colonies of DC. In addition, however, the image contains 
numerous instances of intermediate character that are darker than typical for the ferrite but lighter 
than the dominant DC colonies. Moreover, these features often exhibit internal structure that 
complicates interpretation for both the ML model and the manual evaluators. Overall, the QC 
overlay reveals that the ML model accurately segments the DC. The primary performance deficiency 
appears to be that the model struggles to identify small ferrite grains when they are embedded within 
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Figure 13. (a) Preprocessed image slice used for the automated evaluation 
of the outlier indicated as OL-1 in Figure 11a, (b) expanded view showing 
the highlighted area from (a), (c) DC overlay from the automated analysis, 
and (d) expanded view of the DC overlay corresponding to the highlighted 
area in (a) and (c). 

 
Figure 14. DC overlay images from the automated analyses of the outliers 
indicated as (a) OL-2 and (b) OL-3 in Figure 12a.  
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a larger field of DC. A few examples are indicated by the red arrows in Figure 13c and Figure 13d. 
Additional QC overlays are shown in Figure 14 for the %DC outliers designated OL-2 and OL-3 in 
Figure 12a. For OL-2, where the ML model over-predicts the %DC, Figure 14a shows the shade 
(darkness) of the ferrite to be inconsistent across the image. This causes localized areas of ferrite to 
be designated DC, as indicated by the colored fields circled in red. The poor resolution of the grain 
boundaries and the out-of-focus condition in the top half of the image caused the automated 
screening criteria to reject the evaluation, so the inaccurate %DC result is secondary. However, it is 
presented here in order to improve understanding of the model performance. The overlay image 
from outlier OL-3, shown in Figure 14b, illustrates the opposite effect when areas of DC appear 
lighter than expected. In many cases the shading (darkness) is closer to the ferrite than to the darkest 
DC colonies, and a few examples are indicated by the yellow arrows in the image. As a result of the 
low-contrast of these DC regions, they are difficult to properly categorize. The conditions leading to 
the results for OL-2 and OL-3 can probably be addressed by incorporation of a few additional images 
to the training set and by increasing the use of image augmentation during finetuning to "simulate" 
low quality or low-contrast images; however, these characteristics suggest low image quality that may 
be better mitigated by improved surface preparation (polishing and etching).  
 
Finally, Figure 15 shows the initial microstructures (a,c) and QC overlays from the grain size analyses 
(b,d) corresponding to the outliers designated OL-4 and OL-5 in Figure 12b. For OL-4, which was 
rejected by the automated screening criteria, the initial microstructure shows poor contrast and 
almost no visible grain boundaries, Figure 15a. As a result, the entire central region of the image is 

 
Figure 15. Grain size overlay images from the automated analyses of the 
outliers indicated as (a,b) OL-4 and (c,d) OL-5 in Figure 12b.  
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‘counted’ as a single grain in the overlay image, Figure 15b, and the automated evaluation over-
predicts the average grain size (recall that smaller G corresponds to larger grains). In contrast, the 
images from OL-5, Figure 15c and Figure 15d, show well-defined, high-contrast grain boundaries and 
accurate segmentation. In both cases, OL-4 and OL-5, the visual QC confirms the outcome of the 
automated screening. 
 
 

Summary and Conclusions 
 
This work describes a process for automated evaluation of replica microstructures obtained from steel 
line pipe. While the evaluation is performed in several steps, each step requires minimal touch time 
by the operator. This significantly reduces the time required for evaluation relative to traditional 
manual methods, particularly when evaluation is performed on a large number of images. At the core 
of the process are two operations: i) segmentation of the microstructure to delineate the ferrite grains 
and the DC colonies, and ii) analysis of the segmented images to determine the count of ferrite grains 
and the percentage of the image (by area) occupied by DC. Those values are subsequently used to 
calculate the average grain size by a series of straightforward calculations. 
 
The segmentation process is performed in Python using an ML model that was pre-trained on a 
database of over 105previously segmented microscopy images. Finetuning the model was performed 
on a small set of application-specific images comprising 17 manually segmented images of different 
line pipe microstructures. The segmented images are subsequently analyzed in ImageJ to determine 
the %DC and the number of ferrite grains. In addition, the ImageJ analysis outputs additional ‘QC 
overlay’ images in which the original microstructure is overlayed upon colormaps of the distinct 
ferrite grains or DC colonies. Finally, a pair of quantitative criteria were developed to enable 
automated screening of inaccurate grain size analyses based on the observation that inaccurate results 
were most often caused by undercounting grains due to poor image quality. 
 
Results from the training images indicated that the automated segmentation generally reproduces 
the manual segmentation. Validation of the screening criteria performed by analysis of 397 
microstructure images revealed that the automated grain size screening criteria duplicate the results 
from a visual QC more than 95% of the time. For 171 images with corresponding manual 
evaluations, the automated results tend to over-predict grain size slightly relative to, but are generally 
within the uncertainty limits of, the manual measurements. Similar comparison of the manual and 
automated results for %DC shows that the automated evaluation tends to over-predict when 
the %DC is below approximately 10%, but is within the uncertainty limits of the manual 
measurements over most of the relevant range of %DC (10% to 35%).  
 
 

Future Work 
 
Future development of a v2.0 of the automated evaluation process will address known deficiencies 
in performance and functionality. These include the overprediction at low %DC and the imperfect 
delineation of low-contrast colonies of DC. In addition, screening criteria will be developed for %DC 
to allow automated identification of unreliable results, and training for TMCP and quenched and 
tempered microstructures will be improved. Finally, the user interface will be streamlined so that all 
the functionality can be implemented from a single call in Python, rather than requiring the user to 
switch between ImageJ and Python. 
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