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Abstract 
 

he development of conventional inline inspection technology has been geared towards ultra-high 
resolution tools requiring a completely cleaned pipeline and coming with increasing costs and 

data handling time. By comparing data between inspections, unconventional inline inspection tools 
equipped with off-the-shelf micro-electromechanical magnetometers provide actionable information 
on the best allocation of resources for digs and high resolutions tools as well as the location of 
unexpected changes such as illegal hot tap installations. To ensure an accurate comparison between 
inspections, the data of subsequent inspections must be perfectly aligned. This presentation will 
discuss a fully automated approach to align inspection data using Monte-Carlo based time warping 
strategies. 
 
We will illustrate the method with a case study conducted by Pan American Energy. They installed a 
hot tap at an undisclosed location along a nearly 3,000 meter steel pipeline and asked INGU to locate 
it. The hot tap was unambiguously identified and Pan American Energy confirmed that the provided 
location was within the 6 meter acceptance criterion for the project. 
 
 
Introduction 
 
In 2016, a pipeline failure in North America resulted in the uncontrolled release of 2,000 metric 
tons of hydrocarbons (both liquid and gas) [1]. Since the 1960s, magnetic flux leakage (MFL) and 
ultra sound devices have been the primary tools used for pipeline integrity management since the 
1980s. However, due to tight bends, non-circular valves, diameter changes or unknown geometry 
[1,2], approximately 70% of US gas lines built before modern inline inspection (ILI) was a viable 
technology are considered unpiggable [3], up to 40% of the lines in service as of 2012 [4]. In response 
to this issue, more recent technologies have been developed since the early 2000s to address 
unpiggable lines [5,6]. These devices have applications in leak detection, either by acoustic signature 
[7] or pressure differential [8], pipeline path reconstruction [7,9], and wall condition assessment 
[10,11]. 
 
Free-floating inline inspection tools have the potential to make a large impact in illegal hot tap 
detection. Estimates from 2012-2017 indicate Nigeria loses 30% of their total hydrocarbon output 
to theft, around $8 billion, largely through hot taps [12]. The EU loses 4 billion euros in revenue due 
to hydrocarbon theft worldwide [13] and the worldwide loss is estimated at $133 billion [14]. Any 
welding or cutting process involving heat or stress should change the remnant magnetic flux of the 
pipeline which is detectable with passive magnetometers in free-floating devices. To make such a 
comparison the relative error in the distance scale between the two runs must be smaller than the 
features in the magnetic flux data. 
 
Free-floating tools take measurements in time and infer a distance scale later rather than directly 
measuring distance with odometer wheels. This time to distance mapping function is created from 
observed features (bends, joints, elevation changes, etc) [11]. Recent advances in automation of joint 
detection from remnant magnetization have lowered the costs and improved the accuracy of time to 
distance maps for free floating tools [15]. Errors in distance less than 10 m on a 10 km pipeline are 
now standard. However, this accuracy is still orders of magnitude lower than is useful for a remnant 
magnetization comparison. To make this comparison feasible, the signals must be aligned with 
respect to eachother. 

T 
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Comparing time series data while accounting for shifts in the x axis between data sets has been 
addressed since the late 1950s [16] and in 1968 dynamic time warping (DTW) method was published 
[17]. DTW is still an active area of research today [18,19]. The main challenges in the field are physical 
constraints on the warp mapping and computational cost as a function of sequence length. Naive 
DTW is prone to chasing noise which, in extreme cases, can result in mapping the majority of one 
signal onto a single data point in another. Stated rigorously, the warp function    may 
have a derivative between 0 and infinity although in most applications, the derivative of the true warp 
function is bounded 1      where  is less than 5. Global constraints can be 
applied to prevent these errors from causing large distortions, most commonly the Sakoe-Chiba band 
[20] and Itakura parallelogram [21], but the small scale distortions can still be problematic. 
Computation cost scales with  where  is the sequence length. In 2018, this was reduced to 
order  log  [22] with the fastDTW algorithm but this prevents the application of constraints to 
reduce non-physical solutions. In short, for sequences on the order of 10^7-9 data points, DTW is 
an impractical solution for signal alignment where signal exists on multiple length scales.  
 
To overcome challenges in signal alignment, we will introduce a Monte Carlo search based time 
warping algorithm. This work was motivated by the need to compare remnant magnetometry within 
pipelines to detect hot taps. It is computationally impractical for many of the modern uses of DTW 
(scouring time series databases for similarities) but useful when comparing large length time series 
with signal on multiple length scales if computational cost is inconsequential. It is also easy to add 
precise physical constraints to the warp path (either global or local, derivative or positional), and it is 
easily parallelizable. 
 

Defining a Monte Carlo time warp 
 
A warp function is any monotonic increasing function   . Given any two time series,  
and , and a scalar comparison function , , the goal of any time warp algorithm is 
to find a warp function  that minimizes , . Mostly commonly, including in 
DTW, the comparison function is a mean squared error. Methods of time warping vary based on 
how the warp function is discovered. This method is a Monte Carlo optimization search. 
 
First, we define our constraints. The derivative of the warp path, , is the ratio of compression 

or stretching between the two signals. Usually this constraint is symmetric, 1     . The second constraint is a total displacement constraint. In most cases, it is unlikely that the 
first 20% of one signal maps onto the first 80% of the other signal. Therefore, we can impose a limit 
on the search that restricts matching to within a certain buffer of the original x scale. Expressed 
mathematically, this is |   |   lim. It is unlikely to be known in advance what these limits 
are. However, setting reasonable limits greatly reduces the possible search space and improves the 
efficiency of the Monte Carlo algorithm (provided of course, those limits do not exclude the optimal 
path from the search space). 
 
To align the data between time series, we begin with a linear discrete approximation of the warp path, 
ie    so there is no modification of the signal. Then we select a point, randomly move it 
within the constraints, and check with the comparison function if the change improved the warp. If 
the change improved the warp, we keep the change and repeat the process. If it did not, we discard 
the change and repeat the process. This is a search through a high dimensionality, highly non-linear 
space so the Monte Carlo solution is prone to being trapped in local minima. This can be addressed 
by running the Monte Carlo search independently many times. It is important to note that there is 
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no guarantee the global minima is approachable in a step-wise fashion. Despite the caveats, the Monte 
Carlo search solution significantly out performs the dynamic time warping algorithms. 
 
Constraints on W(t) 
 1    

 |   |   lim 
 

 
Figure 1. The warp path is subject to global and local constraints. The distance 
limit ( lim) is a global constraint that reflects the absolute error of the distance 
between the two time series. The slope limit ( ) is a local constraint that 
reflects the relative compression between the two time series. On each iteration 
of the Monte Carlo, a randomly selected point on the warp path is moved to a 
random location subject to the warp constraints. The new value for this warp 
point is found by sampling a uniform probability distribution. 

 
When implementing a search between two time series, there are usually no first principles reasoning 
that can set these limits. The limits, lim and , are set on a case by case basis by the user. The 
smaller they are, the faster the Monte Carlo search will converge unless the desired optimum is 
excluded from the search space. Practically speaking, the sensitivity of the solution is more dependent 
on lim than . We have never run a Monte Carlo where lowering,  from 4 to 1.5 produced a 
noticeable performance improvement and we have never seen a pair of signals where s_lim = 2 
excluded the desired solution. 
 
Procedure for single phase Monte Carlo time warp 
 
1) Approximate  as a discrete signal (   ,    .  .  .  . 
 
2) Select the ith point at random. 
 
3) Move  to a new position such that the new  satisfies the constraints. 
 
4) If ,   ,  keep the change, otherwise discard the 
change. 
 
5) Repeat steps 2-4 until the loss function levels off. 
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6) Repeat steps 1-5 200 to 1000 times and select the solution with the smallest loss function value. 
 
 

Loss functions, signal downsampling, and warp path resolution 
 
The nature of ,  has been general on purpose because any loss function can be used so long as 
the desired result creates a global minima. The natural loss function is either mean square error or 
absolute error. However, interpolation of large signals is computationally expensive and yields worse 
results. Because signal peaks and troughs must align almost exactly (at least to within a feature width) 
to see a loss function decline, the loss function is extremely jagged and traps the Monte Carlo in local 
minima easily. To avoid this trap, the data is downsampled by binning, taking the minimum and 
maximum value of each bin. This significantly reduces the information content of the signal while 
preserving the most extreme features making the loss function less jagged. Normalizing the loss by 
the spread of the template function, A, further reduces the propensity of the Monte Carlo to be 
trapped in local minima. 
 ,  A   B   A   BA   A  

 
While this smooths the loss function, it also removes small features that are necessary for fine 
alignment. However, by running sequential Monte Carlo searches at progressively increasing 
resolutions, we can align large features first and refine on small features later in the search process. 
Initially we begin with large bins and a warp path approximated by a few points. Because this search 
space is relatively small, the Monte Carlo converges quickly. We then increase the resolution of both 
the warp path and the downsampled signals and repeat the process. In this application, splitting the 
Monte Carlo search into three steps, increasing the resolution of the warp path and the downsampled 
signal each time, results in warp paths far more accurate and constrained by physical limitations than 
those produced by DTW. We refer to this as a multiphase Monte Carlo time warp. 
 
 

 
Figure 2. In each phase on the Monte Carlo search, the resolution of the warp 
path and the downsampled signal increases by a factor of 10. The warp path 
progression shown here is approximately 5 for illustration purposes (otherwise 
the dots on the final graph would be indistinguishable). 
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Figure 3. The loss function versus Monte Carlo cycle for the alignment of two 
time series. Each phase shows an exponential decay because each drop in the 
loss function lowers the probability that the next Monte Carlo cycle will find 
an improvement. Each new phase begins with a step change in the loss function 
because the loss function is now being computed over a larger number of 
points. This three phase Monte-Carlo search is typical of our alignment process. 

 
The multi-phase strategy can still be trapped by undesirable local minima although is empirically less 
likely. It is therefore necessary to run the Monte Carlo search hundreds of times independently and 
select the best result. This gives a similar procedure for the multi-phase process: 
 
Procedure for multi-phase Monte Carlo time warp 
 
1) Approximate  as a discrete signal (   ,    .  .  .  . 
 
2) Select the ith at random. 
 
3) Move  to a new position such that the new  satisfies the constraints. 
 
4) If ,   ,  keep the change, otherwise discard the 
change. 
 
5) Repeat steps 2-4 until the loss function levels off. 
 
6) Increase the resolution of , , and  and repeat steps 1-5 for two or three levels of 
resolution. 
 
7) Repeat steps 1-6 200 to 1000 times and select the solution with the smallest loss function value. 
 
 

Case study - locating a hot tap in remnant magnetometry 
 
In 2023, Pan American Energy ran a test case to demonstrate remnant magnetometry is an effective 
and economical solution for ongoing monitoring for illegal hot taps. They introduced a new hot tap 
in a 3 km 6 inch crude oil pipeline. Tools were deployed twice before and twice after the hot tap 
installation. A precise and accurate distance scale is generated by utilizing the identified girth welds 
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and fittings in the magnetic flux data with known information provided by the operator. The signals 
were then aligned using the Monte Carlo time warp algorithm presented in this paper.  They were 
compared by taking the absolute value after subtracting the 0.1 m binned signals.  This is reported 
below as absolute difference. 
 

 
Figure 4. Two remnant magnetometry signals, one before and one after hot tap 
installation.  The distance scales are inferred from bends, valves, and welds 
identified in the data.  On the left, the original distance scales show small 
misalignments that prevent the identification of changes between runs.  On the 
right, after the alignment of the signal by Monte Carlo time warping, the 
difference metric shows a pronounced change at the hot tap relative to any 
other section of the line. 

 
 
The Monte Carlo time warping was used to align all four data sets.  The two before the hot tap 
showed no trace of a peak whereas the two after the hot tap showed a repeatable signature consisting 
of one large peak (about 0.4 Gauss) followed by one smaller peak (about 0.15 Gauss).  Rapid heating 
and freezing of the metal during the welding process is most likely responsible for the change in 
remnant magnetic flux. 
 

 
Figure 5. The comparison of four remnant magnetometry measurements, two 
before and two after the installation of a hot tap. The peak at 1848 m post-hot-
tap is repeatable and significantly larger than any other magnetic changes in 
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the line. This location corresponded to the real location of the hot tap to within 
6 meters. 

 
This project focused on the effectiveness of magnetic signatures for the identification and localization 
of hot taps. This technique opens up the possibility of more frequent monitoring, making it possible 
to rapidly detect new hot taps within the system. The dynamic nature of this solution makes it tamper 
proof and highly reliable, minimizing financial losses, and increasing safety and reliability. 
 
 

Conclusion 
 
Here we presented a Monte Carlo method for the alignment of time-series signals. Accuracy with this 
solution is a function of computation time and power. We used this method to align remnant 
magnetometry signals to detect a hot tap during a blind test. The hot tap was located to within 6 m 
demonstrating the validity of remnant magnetometry comparison, the accuracy the distance 
reconstruction process, and the repeatability of the IMU measurements. 
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