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Abstract 
 

achine learning tools have been used for over a decade to process the large amounts of in-line 

Inspection (ILI) data and to report accurate sizing of metal loss features.  With the explosion 

of software solutions that came with the advancement of graphic processing units, (GPU) power and 

memory available to the commercial market, the use of machine learning in processing magnetic flux 

leakage (MFL) tools for corrosion sizing are now standard in the industry.  An aspect of automation 

that does not get as much attention is the identification of features such as fixtures.  Traditionally 

this task has been done either manually or with a semi-automated process based on signal pattern 

recognition by utilizing operator provided survey data.  As fixtures are commonly used as a reference 

point when performing dig verifications, fast and effective methods for locating them are helpful.  
 
This paper will present an approach using a machine learning method called semantic segmentation.   

There is an enormous amount of information contained in an MFL survey that has an image like 

structure with magnetic measurements sampled both axially and circumferentially on a grid. The 

powerful technique of semantic image segmentation, which is used in applications like autonomous 

driving, medical imaging, urban planning, manufacturing, robotics, etc., is ideal for analyzing this 

data.   

 

Four different models will be presented to demonstrate how a combination of them can perform the 

task of identifying and classifying pipeline features.  This work will lay the foundation of not only 

automating a semi-manual task but training models to focus on features of concern to the operator.  

Due to concerns about aging infrastructure, identifying certain types of fixtures can help with 

integrity threat management.  The use of these models has the potential of identifying specific 

features that have known integrity concerns and facilitate a pipeline owner’s remediation plan. 

 
Keywords: Semantic Segmentation, Magnetic Flux Leakage, MFL, FPN, Feature Pyramid Networks. 

 

Introduction 
 

Since the 1960s, the examination and maintenance of pipeline networks have relied on the Magnetic 

Flux Leakage (MFL) phenomenon. [1] Understanding and relating the MFL signal traits to pipeline 

defects and categorizing pipeline components have posed significant challenges in the inspection 

sector. This issue is challenging, existing within a multi-dimensional framework influenced by factors 

such as pipeline materials, manufacturing processes, internal conditions created by the product being 

transported through the pipeline and the non-unique inversion problem of mapping MFL to metal 

loss geometry.  Moreover, data collected during inspections may exhibit a low signal-to-noise ratio 

due to the dynamics of the varying distance of sensors to pipe the pipe surface, magnetic permeability 

variations due to pipe metallurgy and manufacture, and changes in the tool velocity as it performs its 

inspection. To tackle these hurdles, the industry has combined experimental[3], signal processing[4]-

[6], and numerical techniques[7]. With the universal approximation theorem enabling Neural 

M
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Networks (NN) to handle complex functions [8], it is anticipated that neural networks will surpass 

traditional methods in prediction accuracy, given the complexity of this problem. 
 
Similarly, both academia and industry frequently integrate NNs into their methodologies. These 

efforts entail replicating finite element solutions to Maxwell's equations, which constitute the forward 

process of characterizing the MFL generated by metal loss geometries[9][10] and developing a depth 

prediction by parameterizing signals into tabular forms[11][12]. These endeavors to resolve Maxwell's 

equations and compare signals from an inspection with a database of solutions represent a 

computationally intensive approach. Additionally, the matching process of MFL signals to depths 

poses challenges, given the nonlinear nature of Maxwell's equations, especially in the presence of 

nonlinear materials like pipe steel with various manufactures. The process of summarizing signals 

into tabular formats due to signal sampling leads to a reduction in information compared to 

examining signals comprehensively [13]. Analyzing MFL signals through convolutions while 

maintaining signal integrity, facilitates the utilization of more intricate Convolutional Neural 

Networks (CNNs) capable of generalizing to complex defect interactions. This is made possible by 

accessing pixel- level information [14] [16]. 

 

Semantic Segmentation, a well-established technology in various fields like medical imaging[17], 

autonomous driving[18], and surveillance[19], involves image classification at a pixel-level. The 

journey of image classification models commenced in 1998 with the LeNet model [20]. However, the 

inclusion of Multi Perceptron Layers (MLP) at the end of these models posed limitations on achieving 

pixel-level classification. Subsequent advancements extended the LeNet model, leading to iterations 

like AlexNet [21], VGGNet[22], and GoogleNet [23]. The advent of Fully Convolutional Networks 

(FCN) marked a milestone by enabling pixel classification, thereby enhancing object detection 

boundaries. 

 

Various strategies emerged to refine classification quality, focusing on enhancing information flow 

and preservation within the encoder section [24][25]. Moreover, techniques were devised to maintain 

precise object boundaries by establishing path information between the encoder and decoder within 

the architecture. This conceptualization gave rise to diverse architectures like UNet[26],  Linknet[27], 

FPN [28], and PSPNet[29] among others. These architectures have demonstrated success in extracting 

and generalizing information from datasets across diverse environments, such as cities and various 

weather conditions[19], providing evidence for their inherent inductive bias[30]. 

 

Considering the gaps in the current approaches to analyzing MFL signals and the promising 

generalizability of results from encoder-decoder architectures, we employ the use of the approach to 

analyze MFL data. As an initial attempt of incorporating the models into our workflow, we solve the 

problem of detecting pipeline components. This step is an essential piece of pipeline integrity analysis 

that enables the correlation of extracted analyses with observations in the field. In our current work, 

we elucidate the methods and approaches we used for our previously developed and published work 

[31]. We also provide data curation approaches to make the training process feasible and provide 
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high performance. This work further establishes the potential of encoder-decoder networks to analyze 

MFL data as well as their capability to capture the complexities of the physics, of adding different 

inspection conditions, and to provide reliable industry accepted results. 
 
Methodology 
 
Each pipeline inspection, called a run, encompasses the examination of multiple connected pipe 

joints comprising a section of the inspected pipeline. The analysis presented here draws data from 

209 runs managed by various pipeline operators in North America, ensuring a diversified dataset that 

accurately represents pipeline configurations in North America. For this analysis, we isolated and 

stored MFL data separately for each joint within the pipeline, focusing solely on individual pipe joint 

features. This decision stemmed from the recognition that pipeline features spanning multiple joints 

exhibit limited diversity, falling within a narrow range of categories. 

 
Figure 1 : Breakdown of the number of training, testing and validation sets for each pipeline 
component. 
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With a dataset comprising 115 thousand pipe joints, we performed random selections for training, 

validation and test sets, represented in Figure 1, with a distribution ratio of 80%, 10%, and 10% 

respectively. The components in the training set are used to determine the weights in the model by 

minimizing a cost function, which is a function that effectively measures the error between the model 

prediction and the actual value.  The components in the validation set are used to evaluate the model.  

Every model has hyperparameters which can be tuned, and the validation set is held back from 

training the model in order to monitor the performance of the model unbiasedly during training 

time.  Finally, the model is evaluated against a test set that contains data it has never seen either in 

training or in validation.  

 
The first stage of the model development is to determine the hyperparameters and uses only sampling 

of the total data divided up into training, validation and test sets in the relative proportions previously 

stated. This stage determines the loss function and model optimization hyperparameters that will be 

used in the next stage. The next stage uses all the data divided up in the 80% - 10% - 10% proportion 

for the training, validation and test sets respectively. The model is solved in stages called epochs where 

the model fitted to the training data is compared against the validation data and then retrained.  At 

the end of all the epochs the results are compared against the test data.  The performance against this 

test set is the best predictor  on how the model will perform on future runs. on operational to act  

 
 Across all three datasets, in addition to background, twelve primary classes were identified The 

background class encapsulates crucial details about pipeline defects, presenting a scale smaller than 

the primary components. Consequently, minimizing pipeline data size reduces the background 

information to an undetectable scale, ensuring uniformity across the background as a singular class.  

 
The dataset's class distribution (Figure 1) reveals a significant imbalance among the classes, 

emphasizing the criticality of selecting an appropriate loss function. Moreover, aligning with business 

objectives, balancing the extra work of false positives with the risk of false negatives, adds another 

layer of consideration while evaluating loss functions. Given these parameters and the semantic 

segmentation nature of the problem, our focus narrowed down to three specific loss functions: Dice 

[32], Lovasz-Softmax [33] and Focal Tversky [34]. 
 
The Dice Loss (DL) is a commonly utilized loss function that measures image similarity. However, its 

equation exposes the potential for gradient vanishing when dealing with small values of   (actual) 

and  (predicted): ,  

On the other hand, the Lovasz-Softmax loss optimizes the Jaccard index [35], the ratio of the 

intersection of two sets divided by their union, exhibiting enhanced performance in terms of 

intersection over union. Further research indicates its efficacy in accurately capturing object 

boundaries [36]. 
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Meanwhile, the Focal Tversky loss (FTL), derived from the Dice loss, specifically tackles data 

imbalance issues, achieving a balanced precision and recall. ,   

Leveraging the Tversky index, which allows model tuning to favor either false positives or false 

negatives, FTL adds another parameter  which allow tuning for less accurate predictions that have 

misclassified data points.  The  and  coefficients allow tuning against false negatives and false 

positives, respectively, which aligns well with tailoring the model to fulfill specific business objectives. 

 
Modern fully convolutional neural networks tailored for semantic segmentation typically consist of 

an encoder and a decoder. The encoder's primary role involves feature extraction from images while 

reducing the feature space dimensions through manifold learning techniques which are just 

techniques that map data in higher dimensions to a lower dimension. The architectural variations in 

the encoder section of these models aim to optimize information pathways, preserving maximum 

information and establishing a diverse feature space to enhance prediction accuracy. 

 
Conversely, the decoder component undertakes the task of up-sampling the feature space to match 

the original image size, contributing to the final prediction. Designing a complete encoder-decoder 

model also involves the crucial aspect of retaining intricate details during the image up-sampling 

process. This necessity leads to various methodologies for transferring information between the 

encoder and the decoder. 

 
In our quest to identify the most effective architecture, we opted for FPN and Unet due to their 

demonstrated performance in other applications [37][38]. FPN is a top-down architecture that creates 

features on each level of the decoder and independently makes predictions. Unet is a fully 

convolutional network like FPN, but it concatenates feature maps at the same spatial scale and 

predictions are only made on the final upsampled feature map. Combining these architectures, we 

integrated three distinct encoders—Xception [39], ResNeXt [40], and DenseNet [25]—in order to 

leverage their strengths in enhancing the segmentation performance of our model. 

 
Xception is an encoder that produces depthwise separable convolutional layers. It operates on the 

assumption that all the convolutions are entirely separable and creates a combined stack of features 

on a layer that it passes on to the next layer. The ResNeXt encoder is designed to transform points 

sharing the same topology and project them onto a lower dimension. Instead of adding multiple 

layers, ResNeXt preserves information via a twostep process that adds the identity data point to its 

transformation. This encoder performs gradient propagation as the error can be back propagated 

along multiple paths. Finally, the DenseNet encoder is an extension of ResNeXt where instead of 

just connecting an encoding layer to the layer after it, it connects to all layers after it allowing 

information to be persevered in the downsampled layers.   
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After building the model, we conducted optimization runs separately from the main training 

procedure, utilizing a random subselection of our data, to fine-tune the loss function and parameters 

specifically for the Focal Tversky loss. Our findings indicated superior performance of the Focal 

Tversky loss in comparison to Softmax-Lovasz and Dice. Additionally, we optimized the values of  

and , governing the model's predictions by penalizing false positives or false negatives. The 

optimized values for  and  were determined thus minimizing false negatives and aligning with our 

business objectives [31].  

 

Results 
 

Our training process involved using the Focal Tversky loss on four models, conducted on two 

NVIDIA Tesla M60s, managed through the PyTorch Lightning module [41] across twenty epochs. 

Results indicated that the DenseNet encoder with the FPN architecture emerged as the top-

performing model. However, our experiments suggested that a weighted ensemble model, utilizing 

logits predictions, outperformed all other models in metrics.   

 

Attachment values are reported as zero due to most instances being classified as either Fittings or 

Gains. This occurs because Attachments bear similarity to these categories within the MFL dataset, 

often necessitating additional data sources for accurate identification. Notably, some classes 

encompass diverse pipeline components, such as Gains and Repairs, with signals that might appear 

random to the model due to their varied definitions and appearances. Consequently, these classes 

exhibit lower precision and recall rates [31]. 

 

The majority of classes maintain an acceptable recall, aligning with our project's business objectives. 

Lower precision in certain classes, like fittings, may partly result from missing components in the 

ground truth detected by the model (Fig. 2 rows 5 & 8). Furthermore, the model's classification and 

boxing performance have streamlined our data analysis team's reporting process. Their tasks now 

focus on editing the model's results rather than detecting, classifying, and boxing components. 

Remarkably, the model even identified objects absent in our ground truth, signifying an 

enhancement in detection quality (Fig. 3 row 8). 
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Figure 2 : Comparison of the MFL data (left)  to the annotated features (middle) and predicted 
features (right) 

 
This approach not only reduces the reporting time but also enhances the quality of our data analysis 

team's work by replacing repetitive tasks with an editing procedure.  

 

Conclusion 
 

Our efforts culminated in the development of a network capable of classifying and boxing pipeline 

components using MFL (Magnetic Flux Leakage) data. To create these models, we initially selected a 

loss function from three candidates using a subset of the data. Subsequently, we evaluated four 

combinations of encoders and architectures, namely DenseNet-FPN, ResNeXt-FPN, ResNeXt-UNet, 

and Xception-FPN, using our complete training dataset. Among these models, DenseNet-FPN 

demonstrated the best performance. Further analysis revealed that the most exceptional performance 

was achieved through a hybrid model, a blend of all four models. This hybrid approach involves 

aggregating logits from each model and applying a weighted average, resulting in superior 

performance. 

 

Consequently, we successfully achieved our objective of classifying and boxing pipeline components 

while significantly reducing the operational and reporting time of our data analysis team. Their 

workload transitioned from manual detection, classification, and boxing to editing the output 

generated by the developed model. Moreover, by eliminating the more tedious aspects of their work, 

we've notably enhanced the accuracy of our data analysis efforts. The model's capability to detect and 

classify objects missing in the mask further supports the argument for improving the quality of data 

analysis work. 
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This project holds promise in enabling our data analysis team to effectively manage pipeline system 

integrity, optimize maintenance spending, and mitigate the risks of potential incidents. Moving 

forward, our plan involves ongoing refinement of the model to enhance its performance and extend 

the utilization of similar models for other pipeline inspection tasks. 
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