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Abstract 

ree floating inline inspection (ILI) tools using magnetic flux density (MFD) measurements have 

been enhancing pipeline integrity programs for nearly a decade. The use of MFD measurements 

to infer information on the pipeline wall condition has been demonstrated and with more inspection 

data becoming available, the capability of using MFD measurements is continuously increasing. This 

work focuses on anomalous weld identification by applying principal component analysis to magnetic 

flux density data captured by free-floating ILI tools. The concept of principal component analysis will 

be explained, how this approach can be applied to unsupervised classification tasks in general, and 

the results of the specific use case of anomalous weld identification. 

Introduction 

The global demand for hydrocarbons continues to grow, placing increased pressure on pipeline 

infrastructure. Pipelines serve as the primary mode of transport for oil and gas, spanning continents 

and oceans to deliver energy to consumers. Despite their efficiency, pipelines are susceptible to 

failures, which can have far-reaching consequences. For example, in 2016 in North America a 

pipeline failure resulted in the release of 2,000 metric tons of hydrocarbons, causing environmental 

damage, economic losses, and public safety concerns [1]. 

 

The integrity of pipelines has been a subject of ongoing research and technological development. 

Traditional inspection tools, such as magnetic flux leakage (MFL) and ultrasonic devices, have been 

the mainstay of pipeline integrity management since the 1980s. These tools have proven effective in 

detecting corrosion, cracks, and other forms of damage. However, they face limitations when 

inspecting pipelines with complex geometries, such as tight bends, diameter changes, or non-circular 

valves [1,2]. These challenges are particularly acute for "unpiggable" pipelines — those that cannot 

accommodate conventional inspection tools. In the United States, approximately 70% of gas lines 

constructed before modern inline inspection (ILI) technologies were developed are considered 

unpiggable, representing up to 40% of pipelines in service as of 2012 [3,4]. 

 

Addressing the challenges of unpiggable pipelines requires innovative solutions. Advances in free-

floating inline inspection tools since the early 2000s have opened new avenues for pipeline 

monitoring. These tools, which operate independently of pipeline geometry, are capable of detecting 

leaks [5,6], reconstructing pipeline paths [7,8], and assessing wall conditions [9,10]. Unlike traditional 

pigging devices that require continuous contact with the pipeline interior, free-floating tools navigate 

pipelines autonomously, collecting data as they move through the pipe. This capability allows them 

to operate in pipelines with complex geometries, including those with sharp bends, varying diameters, 

and non-standard features.  Among their many applications, the use of remnant magnetometry for 

weld inspection is a promising area of research. This paper focuses on the application of principal 

component analysis (PCA) to remnant magnetization data, demonstrating its potential to identify 

welds with anomalous magnetic signatures and improve pipeline integrity management. 

F 
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Material Heterogeneity and the Challenges of Weld Inspection 
 

Because welding is the only portion of the pipeline fabrication that occurs in the field, welds are less 

consistent than the rest of the steel pipe.  As such, they are the most common locations for failures. 

Even a perfectly executed welding process introduces material heterogeneity, particularly in the heat-

affected zone (HAZ) adjacent to the weld. This zone experiences significant thermal and mechanical 

changes, including grain coarsening, phase transformations, and residual stresses. The HAZ is 

particularly susceptible to stress-induced cracking and corrosion, making it a common failure point 

[11]. Additionally, weld defects such as porosity, incomplete fusion, and slag inclusions act as stress 

concentrators, further increasing the risk of failure [12]. Detecting these defects is a key objective of 

pipeline integrity management. 

 

While traditional MFL devices have made significant strides in weld inspection, they face limitations 

in handling pipelines with complex geometries. Remnant magnetometry offers an alternative 

approach by analysing the residual magnetic signatures left by welding and other stress-inducing 

processes. These signatures provide valuable insights into the structural integrity of pipeline joints, 

enabling the identification of potential defects. 

 
Principal Component Analysis: A Framework for Dimensional Reduction 
 

The analysis of remnant magnetization data generates large datasets, particularly for long pipelines. 

For example, magnetometers on free-floating tools sample at frequencies of up to 1000 Hz, generating 

hundreds to thousands of data points per weld signature. Managing and interpreting such data 

requires effective dimensional reduction techniques. 

 

Principal component analysis (PCA) is a statistical method that transforms high-dimensional data 

into a lower-dimensional space while preserving as much variance as possible. By performing a 

singular value decomposition on mean-centered data, PCA identifies a set of orthogonal eigenvectors, 

or "principal components," that capture the most significant patterns in the dataset. 

 

In this study, these principal components are referred to as "eigenjoints," representing the magnetic 

signatures of pipeline joints. The explanatory power of each eigenjoint is quantified by its singular 

value, which provides a measure of the variance explained by that component. Cumulative energy 

plots visualize this information, illustrating how variance is distributed across the eigenjoints (Figure 

1). 
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Figure 1. Cumulative energy plots of PCA analysis shows that less than 20 eigenjoints explain greater 
than 90% of the variance of the sample from this pipeline. 

 

For the pipeline analyzed in this study, PCA revealed that the first eigenjoint captured 65% of the 

variance in the dataset, while the first 20 eigenjoints explained 98% of the variance. This finding 

highlights the effectiveness of PCA in reducing data complexity while retaining essential features. 

 

 

Figure 2. One of the typical joints in our sample is shown here as an approximation by a linear 
combination of increasing eigenjoints.  At 25 eigenjoints, the approximation reproduces all features 
of the original signature. 

 

By expressing each joint as a linear combination of eigenjoints, it becomes possible to classify welds 

based on the contributions to the various eigenjoints. Outlier joints, characterized by unusual 

magnetic signatures, can be identified by analysing deviations in eigenjoint contributions.  An 

example of a magnetic signature reconstruction based on eigenjoint contributions is shown in Figure 
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2.  By using a linear combination of only 25 eigenjoints, we can reconstruct the magnetic flux density 

signature at every weld in the pipeline. 

 

Results 
 

The analysis focused on a pipeline segment containing 321 joints. Using PCA, the joints were 

categorized based on their eigenjoint contributions. Outliers were defined as joints where the 

contributions of the first two eigenjoints exceeded two standard deviations from the mean.  The 

separation of joints by eigenjoint contributions is shown in Figure 3. 

 

 

Figure 3. Comparison of the contributions of the first 4 eigenjoints to each of the real joint signatures 
in the sample.  Outlier joints were defined as greater than two standard deviations in eigenjoints 1 
and 2.  In the upper right plot, those joints are colored orange to indicate outliers. 

 

Outlier joints exhibited distinctive baseline offsets, a feature predominantly captured by the first 

eigenjoint. This baseline offset accounted for 65% of the variance in the dataset, demonstrating the 

power of PCA to identify key features without manual inspection.  The offset is the most striking 

difference in the sample joints from the normal and outlier groups in Figure 4. 
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Figure 4. Samples of joints from the normal and outlier groups.  The offset feature captured in 
eigenjoint 1 (see Figure 3) is the most pronounced difference between the two groups.  This is 
expected as eigenjoint 1 is responsible for 65% of the variance within the joint signatures in this 
example pipeline. 

 

Discussion 
 

The application of PCA to remnant magnetometry data offers several advantages for pipeline integrity 

management: 

Scalability: PCA is well-suited for analyzing large datasets, making it ideal for pipelines as long 

as free-floating devices can inspect. 

Efficiency: By reducing the dimensionality of the data, PCA simplifies the classification of 

pipeline joints, allowing inspectors to focus on anomalies.  

Insight: PCA quantifies the variance explained by specific features, providing a deeper 

understanding of pipeline joint morphology.  

Future work will explore the integration of PCA with machine learning algorithms to automate 

anomaly detection. Techniques such as clustering and supervised classification have the potential to 

enhance the accuracy and reliability of joint classification. Additionally, expanding the dataset to 

include diverse pipeline materials and configurations will improve the generalizability of this 

approach. 

 

Conclusion 
 

This study demonstrates the potential of PCA in analysing remnant magnetic signatures of pipeline 

joints. By enabling efficient dimensional reduction and classification, PCA provides a powerful tool 

for managing unpiggable pipelines and detecting weld anomalies. As the field of remnant 

magnetometry continues to evolve, the integration of PCA with advanced analytics will further 

enhance pipeline integrity management. 
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