
 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 

 
 
                                                                                
 
 
 
 

 

                                                                                                                     
 
 
 
 
 
 
  

John Donne1, William Shakespeare2, Joseph Conrad1 
1ABC Corp., 2XYZ Ltd. 

 
                                                    

 

 

 

                                                    Organized by 

Title block is Flush Right – 
This Is the PPIM 2025 Style Sample 

with Specs: Style Is Capitals for  
 
 

 

Using Machine Learning to Manage 
SCC: Data Strategy and Best 

Practices 

Syed Aijaz1, Clifford Maier1, Michael Gloven2 
 

1TC Energy, 2Pipeline-Risk (PLR) 

197
197 https://doi.org/10.52202/078572-0012



Pipeline Pigging and Integrity Management Conference, Houston, January 2025 
 

2 
 

 
 
 

  

Proceedings of the 2025 Pipeline Pigging and Integrity Management Conference. 
Copyright © 2025 by Clarion Technical Conferences and the author(s).  

All rights reserved. This document may not be reproduced in any form without permission from the copyright owners. 

198
198https://doi.org/10.52202/078572-0012



Pipeline Pigging and Integrity Management Conference, Houston, January 2025 
 

3 
 

Abstract 

ig data, machine learning and artificial intelligence: these buzzwords invariably create a lot of 

hype but do they actually live up to it? TC Energy’s (TCE’s) threat management team set out to 

answer that question by curating a comprehensive dataset of pipeline integrity digs in-ditch findings 

to create a machine learning model for predicting stress corrosion cracking (SCC) on its transmission 

pipeline assets. In collaboration with Pipeline-Risk (PLR), in-ditch results from 1800+ digs since 2012 

were consolidated. A classification-based machine learning model was trained on a subset of the 

consolidated dig data, and its performance was then evaluated using the remaining, unseen portion 

of the dataset. The results exhibited a predictive efficacy of 87+% for predicting likelihood of SCC 

on TCE transmission pipelines. This model is now utilized in assisting in SCC direct assessment 

(SCCDA) dig site selection workflows and prioritizing in-line inspection (ILI) assessments resulting 

in significant efficiency gains. The most important factors contributing to the success of this model 

were an organized enterprise data infrastructure, subject matter experts (SME)-driven criteria and 

integrated team structure allowing a comprehensive threat management approach. This paper 

showcases the results from this project, and provides recommendations to ensure your organization 

is optimally positioned with people and processes to maximize value created by the computational 

prowess of machine learning. 

 

How have we historically been performing SCC threat management? 
 

Effective management of any pipeline integrity threat begins with a good understanding of that 

threat. The pipeline industry already had some understanding of SCC by the early 1990s, when 

Canada’s National Energy Board (NEB) launched inquiries into this cracking phenomenon that had 

produced several failures. Recommendations from the NEB inquiry report1 eventually led to 

regulations that required Canadian pipeline operators to develop and implement an SCC 

management program.  

 

Pipeline operators outside of Canada generally had SCC management programs in place by the time 

the NEB inquiry report was published. It is clear, however, that the report promoted further 

development of these programs. Additionally, SCC research activity intensified across the industry 

following the NEB inquiry report. This activity resulted in an improved understanding of the 

cracking mechanism and additional guidance for pipeline operators.  

 

ASME B31.8S Managing System Integrity of Gas Pipelines was updated in 2004 to provide guidance 

for SCC management. Additional guidance was provided by other industry publications such as 

NACE RP0204 Recommended Practice Stress Corrosion Cracking (SCC) Direct Assessment 

Methodology (2004), ASME STP-PT-011 Integrity Management of Stress Corrosion Cracking in Gas 

Pipeline High Consequence Areas (2008), and CEPA Recommended Practice for Managing Near-

Neutral pH Stress Corrosion Cracking, 1st Edition (2011). Some of these publications have since 

been updated. 

B
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Many operators have developed SCC management programs that utilize susceptibility criteria based 

on these industry documents. In applying the criteria to specific pipeline segments, operators often 

consider broad characterizations about operating stress level, coating type, and age of the pipeline 

that may not accurately reflect localized conditions. Additionally, soil and terrain characteristics and 

climate conditions are sometimes ignored or poorly integrated. SCC is a complex phenomenon with 

various interdependent causal factors. Consequently, generalized and broad treatment of data may 

result in non-specific results that do not adequately account for local variability in causal parameters. 

Ineffective SCC Direct Assessment (SCCDA) programs, having a limited understanding of crack 

detection in-line inspection results, and inappropriate prioritization of pipeline segments are 

evidence of such an approach. Outcomes can generally be improved by incorporating more detailed 

and localized information that is specific to the pipeline segment being evaluated. To that end, 

pipeline operators need to develop a data-driven threat management approach that incorporates field 

findings, in addition to utilizing susceptibility criteria based on industry recommendations. 

 

How can we move towards a more robust, data-driven approach? 
 

Developing a data-driven threat management methodology does not necessarily entail an increase in 

the amount of data collected. It’s likely that most operators can utilize data that already exist. Namely, 

operators collect a wealth of information during excavations. Many SCC management programs 

incorporate a portion of the excavation data collected, with some of the unused data having the 

potential to unlock additional benefits for SCC management efforts. Thus, operators sometimes miss 

opportunities to gain insights that could have a material impact on their SCC management program. 

Excavation data can be supplemented with soil and climate data from publicly available data stores. 

 

Machine learning is a relatively new, data-driven approach for developing integrity threat 

susceptibility prediction models that can be leveraged by pipeline operators. Data used to develop 

machine learning models can be pipeline specific and reflect a higher level of detail and localization 

compared with broad categorizations and generalized assumptions that are more common within 

SCC management programs. Operators can use machine learning to discover data patterns and 

interdependencies associated with various susceptibility factors related to SCC findings that would 

be otherwise difficult to account for using analytical empirical methods. This includes gaining an 

understanding of how relationships between susceptibility factors influence the likelihood of SCC 

occurring for a given pipeline system. Such insights have been challenging to recognize historically 

because legacy SCC management approaches have generally considered the coexistence of 

susceptibility factors only. With machine learning, complex relationship among many in-ditch 

observations can be utilized and learned from. 
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How did TCE utilize in-ditch data to create a machine learning model?  
 

The SCC machine learning model effort was launched in January 2024 and the final model was 

completed in July 2024. The primary goal was to utilize in-ditch data collected during all pipeline 

integrity digs and develop a machine learning model to predict the likelihood of finding SCC across 

the TCE natural gas transmission pipeline system. 

 

The decision to use in-ditch, dig data instead of electro-magnetic acoustic transducer (EMAT) ILI-

reported crack features was motivated by the desire to remove the uncertainty associated with the 

probability of identification (POI) and probability of detection (POD) characteristic of EMAT 

sensors. ILI-reported features and field-reported features may differ and this may cause the training 

dataset to misinterpret feature call-outs as the target of interest (SCC) rendering the SCC 

classification error-prone. This can happen if the ILI tool reports a crack and upon in-ditch 

investigation it turns out to be a different type of feature. This outcome would introduce errors into 

the training dataset. Conversely, in-ditch observations during a dig (using non-destructive 

examination (NDE) methods) are a confirmation of the feature and feature type and are therefore 

definitive. For this reason, the TCE SCC team curated a dataset comprising of exclusively in-ditch 

observations. By consolidating several categories of observations (shown in table 2), the team 

attempted to replicate the dig site conditions to predict likelihood of SCC.  

 

Creating the dataset best describing SCC conditions 
 

SCC is a form of environmentally assisted cracking that occurs when a combination of environmental 

conditions and tensile stresses act coincidently on a pipeline made from a susceptible steel, that 

results in the formation of cracks on the surface of the pipe. Hence, the susceptibility factors can be 

boiled down to three essential components: the pipeline material, environmental conditions 

surrounding the pipe joint, and the active or residual stress on the pipe. 

 

To best align the training dataset to these susceptibility factors the dataset was curated to reflect these 

data categories. The initial sample data was comprised of 1859 individual digs from 2012-2023. These 

digs were driven by a variety of factors such as post-ILI digs or direct assessment digs. The digs for 

which the data did not meet the standard of completeness and quality for machine learning 

modelling were not used, resulting in a final sample size of 1827 individual digs. Each individual dig 

site exposed up to a single joint of pipe. Table 1 shows the dig data drivers. 
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Table 1. Dig project drivers 

Total digs 1859 

Digs used for machine learning 1827 

Post MFL ILI digs 1017 

Post EMAT ILI digs 388 

SCCDA digs 188 

ECDA digs 48 

Material verification digs 31 

Other digs 155 

 

These digs represent a significant proportion of the geographic footprint of TCE’s US gas 

transmission pipeline assets and therefore provide a representative sample. This includes piggable 

pipelines where TCE had completed an ILI inspection, as well as non-piggable assets where other 

assessment methods were utilized such as direct assessment. 

 
Several data sources containing in-ditch observations collected during various integrity digs were 

identified to create the training dataset, seen in table 2. 

Table 2. Machine learning training dataset – TCE data 

Data Category Field 

Defect Information Defect type 

Crack type 

Crack length 

Crack depth 

Crack max percent depth 

Coincident metal loss 

Pipeline Coating Coating type 

Brand 

Condition as found 

Application method 

Application year 

Defect type 

Pipeline Properties Pipe OD 

Nominal wall thickness 

Pipe grade 

MAOP 

Operating percent SMYS 

Install date 

Manufacturer 

Longitudinal seam type 

202
202https://doi.org/10.52202/078572-0012



Pipeline Pigging and Integrity Management Conference, Houston, January 2025 
 

7 
 

Soil and Terrain Land usage 

Soil pH 

Soil type 

Soil texture 

Fragment size 

Depth of cover 

Drainage quality 

Soil resistivity 

Site topography 

Geospatial Dig site GPS 

Pipeline name/system 

Distance to nearest compressor station 

 

 

In addition to TCE data sources, PLR included publicly available data sources to further augment 

the training dataset including SSURGO, PRISM and NRI data. These are publicly available datasets 

that provide valuable soil, terrain, and climate information for US. 

 

SSURGO2 - The SSURGO database contains information about soil (such as soil texture, properties, 

drainage, electrical conductivity, soil reactions etc, frequency of flooding etc.) as collected by the 

National Cooperative Soil Survey over the course of a century. The information can be displayed in 

tables or as maps and is available for most areas in the United States and the Territories, 

Commonwealths, and Island Nations served by the USDA-NRCS. The information was gathered by 

walking over the land and observing the soil. Many soil samples were analysed in laboratories. And 

collected at scales ranging from 1:12,000 to 1:63,360.  

 

PRISM3 - The PRISM Climate Group gathers climate observations from a wide range of monitoring 

networks, applies sophisticated quality control measures, and develops spatial climate datasets to 

reveal short- and long-term climate patterns. 

 

National Risk Index (NRI)4 - The National Risk Index is a dataset and online tool to help illustrate 

the United States communities most at risk for 18 natural hazards. It was designed and built by 

FEMA in close collaboration with various stakeholders and partners in academia; local, state and 

federal government; and private industry. 

 

 

Refining and enhancing the dataset for machine learning 

 
A few key enhancements were performed on the training dataset to maximize the value from the dig 

findings. 
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Distance to nearest compressor station 
For digs on a pipeline with a compressor station located upstream or downstream, the conservative 

assumption was made to use the distance to the nearest compressor station regardless of flow 

direction. This was to account for any bi-directional lines where the flow direction changes or may 

have changed in the past. This field was added to be in alignment with ASME B31.8S data collection 

recommendations for SCC threat assessment. 

 

Pipe coating brand 
Coating brand was added as a separate field to account for Dearborn wax coating. This type of coating 

was a key contributing factor on one TCE in-service SCC-related failure. This coating is typically 

found to be highly degraded upon excavation and is commonly found to be associated with and SCC 

colonies. However, the coating brand data was sparsely available. Therefore, coating type field was 

modified to account for Dearborn wax as a coating type distinct from other types of wax coating.  
 

Soil texture 
On dig sites where the soil was found to contain any amounts of clay or clay-like texture regardless 

of other soil types found, the soil type was assumed to be clay. This was to account for the detrimental 

effects of clay’s expansion and contraction due to varying levels of moisture on the pipe coating. 

 

Supervised Machine Learning Process 
 

The process of developing a machine learning model relies on the iterative refinement of an initial 

model by training the model on observed outcomes. One or more available machine learning models 

can be deployed, tested and validated on subsets of this training data and the best performing model 

is selected based on its performance. A model’s performance is measured by the metrics of accuracy 

sensitivity, specificity, and balanced accuracy. 

 

Accuracy 
This is defined as the percentage of true calls (true positives and true negatives)  

        

 

 

Sensitivity 
This is defined as the percentage of correctly predicted calls of actual positive instances  
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Specificity 
This is defined as the percentage of correctly predicted calls of actual negative instances  

     

 

Balanced Accuracy 
This is defined as the average of sensitivity and specificity 

  2  

 

The project followed an iterative supervised machine learning process as shown in figure 1. For each 

dig, a binary value was defined as the outcome based on whether SCC was observed or not. The 

input variables were defined based on SME input and availability of quality and complete data. The 

objective of the process was to use machine learning methods to utilize underlying patterns within 

the predictor data obtained from visual inspections. These patterns became the basis of candidate 

SCC prediction models. 

 

 

Figure 1. Machine learning process 
 

 

Training data was divided into learn and test data. The learn data was used to learn candidate models 

based on iterating through different machine learning algorithms and their tuning parameters. Test 

data was used to validate the performance of candidate models.  

 

As seen in table 3, there were various underlying drivers for the digs performed by TCE. The learning 

and test data was divided on basis of the type of dig. All digs that were driven by an EMAT feature 

call that required investigation were called the “SCC digs”. The based on all other factors (post MFL 

ILI dig, ECDA, SCCDA, material verification) were classified as “non-SCC” digs. Henceforth, the 

machine learning algorithm was trained on the non-SCC digs and its performance tested on the SCC 

digs. 
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Table 3. Dig dataset type 

Digs used for machine learning 1827 Dig type Dataset Type 

Post MFL ILI digs 1017 Non-SCC Learn data 

Post EMAT ILI digs 388 SCC dig Test data 

SCCDA digs 188 Non-SCC Learn data 

ECDA digs 48 Non-SCC Learn data 

Material verification digs 31 Non-SCC Learn data 

Other digs 155 Non-SCC Learn data 

 

This was done for one main reason: all dig sites labelled “SCC digs” were driven by existing 

knowledge that there might be SCC found at that location, due to the EMAT-reported feature. As a 

result, these SCC dig records would introduce an inherent bias and lead to an overperforming model. 

To prevent this, the model was trained on all dig sites where integrity teams did not have prior 

knowledge of SCC being found, or where the objective was to remediate non-SCC features (metal 

loss, manufacturing etc.) and in the process found SCC. In early iterations of the project, this was 

found to be true and thereafter, the learn/test data split was modified.  

 

The learning target of interest was based on SCC being found or not found during the in-ditch 

inspection, hence the project followed a binary True/False classification learning process where the 

resulting candidate classification models output a probability of SCC. Models were applied to the 

test data to assess performance and learning curves supported selection of a final model as shown in 

figure 2. 

 

Candidate models were learned based on selected machine learning methods including XGBoost, 

random forest, linear regression and logistic regression.  Models were tested for accuracy (% of correct 

calls), specificity (% of correct ‘No SCC’ calls) and sensitivity (% of correct “Yes SCC’ calls). In the 

final analysis, XGBoost performed best as far as sensitivity and the method’s ability to manage missing 

data, predictor non-linearities and interactions. 
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Figure 2. Model performance learning curves 
 

Learning curves are useful in determining whether a resulting model meets acceptance criteria for 

use in making predictions by visualizing the performance metrics. The model’s sensitivity and 

specificity performance curves are plotted against a threshold for predicting true or false. Adjusting 

the threshold values can impact the model’s performance: 

 

 Sensitivity Curve: Typically, as the threshold decreases, sensitivity increases because the model 

becomes more lenient in classifying SCC. However, this may come at the cost of lower 

specificity. 

 Specificity Curve: Conversely, as the threshold increases, specificity improves because the 

model becomes stricter, reducing false positives but potentially missing true SCC cases.  
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Model insights were gained through global and local predictor explainability analysis. Figure 3 shows 

predictor importance values of candidate models providing a global view of the overall ranking and 

weight of individual predictors. 

Figure 3. Predictors importance values 
 

Figure 4 shows deconstructed predictions on joint or dig basis illustrating the non-linear and 

interactive nature of individual predictors on the local prediction. Each bar and its stacked segments 

represents the predictors contribution to the prediction of SCC being found or not. 

 

 

 
Figure 4. Prediction results per pipe joint 
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Results 
Using these performance evaluation metrics, the TCE machine learning model results can be seen 

in table 4 and table 5. The model performance resulted in a balanced accuracy of 87% on the test 

data. This percentage signifies the model’s prediction correctness for whether SCC is found or not 

found on unseen, test data. 

Table 4. Model prediction results 

 Predicted Negative Predicted Positive 
Actual Negative 239 40 
Actual Positive 12 97 

 

 

Table 5. Model performance metrics 

Evaluation Metric Value  
Accuracy 87%  
Sensitivity 89%  
Specificity 86%  

Balanced Accuracy 87%  

 
The top ten predictors of SCC according to the model are seen in table 6. These predictors are mostly 

consistent with industry guidance and documents, as reflected in operating percent SMYS, distance 

to compressor station, and coating type. Soil and climate fields also appear to be strong predictors of 

finding SCC, and can be explained by their detrimental effects on the coating condition. For 

instance, clay soil in an undulating to depression topographical area with low annual precipitation 

may result in clay compaction over time, contributing to forces exerted on the coating system and 

potentially damaging it.  

 

Table 6. Model top 10 predictors of finding SCC 

Top 10 machine learning predictors for SCC 

Soil texture 

Operating percent SMYS 

Soil type 

Coating type 

Distance to nearest CS 

Site topography 

Annual precipitation 

Clay total 

Maximum temperature 

Silt total 
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What does this all mean? 

 
These results provide validation of the proof of concept that machine learning can be utilized to 

derive valuable and reliable predictions for integrity threats. TCE’s SCC team continues to improve 

and develop the machine learning model by enhancing predictors, addressing completeness and 

quality concerns and incorporating additional dig datasets. Attaining an 87+% predictive efficacy as 

a first pass shows promise for further improvements to model performance.   

 

Therefore, machine learning as an addition to pipeline integrity threat management processes can 

demonstrably enhance an operator’s threat management program. Presently, the SCC team is 

utilizing these results to support in the annual SCCDA dig site selection process to improve 

effectiveness of the dig program, and to prioritize EMAT inspection segments on a transmission 

pipeline system in the US. 

 

It should be noted that like any statistical prediction model, an underlying principle is that the data 

used for developing the model is representative of the population on which the predictions are made. 

Consequently, it is conceivable that conditions may exist which differ significantly from the training 

dataset and therefore, the expected accuracy of the model predictions may suffer. The authors will 

continue to examine the efficacy and performance of the model to further establish the performance 

of the model over a wide range of conditions. 

 

What factors contributed to the success of this machine learning effort? 

 
The most important contributing factor to the model’s performance is the quality data available for 

a large sample of dig locations. This was enabled by TCE’s implementation of key data infrastructure 

enhancements that have enabled leveraging value for the entire organization. The TCE data lake is a 

repository of all key enterprise data sources that were previously disparate and disconnected and now 

are in one convenient location. These data sources include, but are not limited to, GIS data, ILI 

results, CP surveys, soil and terrain surveys, and pipe properties. The implementation of this cloud-

based data infrastructure has enabled access to a vast array of data and allowed multiple teams’ data 

to be connected to reveal valuable synergies. This was instrumental in constructing a quality dataset 

to train the machine learning model. 

 

TCE leaders have cultivated a culture that encourages the development and implementation of new 

ideas. This emphasis on innovation has helped retain skilled data professionals who have made 

significant advancements in data engineering, management, and tool development for TCE data. 

These efforts have improved the quality, completeness, and integration of key data sources. 

 

Additionally, the structured process for handling data collected during digs plays a crucial role. The 

entire workflow for collecting data from field reports, on-site imagery, visual inspections, and NDE 
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results is managed by specialized teams. These teams, which include subject matter experts, integrity 

engineers, and data engineers, thoroughly review and validate the data. Once vetted, the dig results 

are finalized and published. 

 

Implementing machine learning into an integrity management program requires two key 

components: a quality data infrastructure, and a team of skilled data practitioners dedicated to 

developing data-driven tools and solutions. To this end, operators can utilize existing data sources, 

historical records, and reports to complete and refine that data, and integrate it with publicly available 

soil and climate data sources. Further, training and enriching teams with data experts can elevate the 

quality of data available for machine learning. Implementing these changes will support the pursuit 

of machine learning opportunities to enhance threat management programs. These statistically 

driven models can complement an operators existing risk program, SCCDA methodologies and 

provide general guidance for prioritizing future integrity assessments.  
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